Methods for the Determination of the Response Reduction Factor of the Seismic Forces
Journal: Journal of Building Technology DOI: 10.32629/jbt.v7i1.3741
Abstract
The various analytical methods and procedures for determining the response reduction factor for seismic forces in buildings are presented. A critical analysis of the earthquake-resistant design codes of different countries is then conducted, with the aim of determining how they consider the response reduction factor. The main positive aspects for their possible use in the Cuban Earthquake-Resistant Code are also analyzed.
Keywords
response reduction factor; ductility; overstrength
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] Applied Technology Council [ATC]–19. 1995. Structural response modification factors. California, USA: autor.
[2] Applied Technology Council [ATC]–74. 1974. An evaluation of a response spectrum approach to the seismic design of buildings. Report ATC-2. California, USA: autor.
[3] Arroyo, D. y Terán, A. 2002. Factores de reducción de fuerzas sísmicas para el diseño de estructuras con sistemas pasivos de disipación de energía. Revista de Ingeniería Sísmica, 66, 73-93.
[4] Bertero, V., Anderson, J., Krawinkler, H., & Miranda, E. 1991 Design guidelines for ductility and drift limits: Review of state-of-the-practice and of the art on ductility and drift-based earthquake-resistant design of buildings, Report on Task1, A CUREe-Kajima Research Report.
[5] Caracas, Venezuela. Ministerio de Desarrollo Urbano 2001. Norma COVENIN 1756. Edificaciones Sismorresistentes, FUNVISIS. Caracas, Venezuela: autor.
[6] Comité Européen de Normalisation [CEN]. 2012. Eurocode 8, Design of structures for earthquake resistance. Bruselas, Bélgica: autor.
[7] Elnashai, A., & Mwafy, A. 2002, Overstrength and force reduction factors of multistory reinforced-concrete buildings, Struct. Design Tall Building, 11, 329-351.
[8] Cuba. Oficina Nacional de Normalización NC. 2017. NC 46:2017: Construcciones Sismorresistentes. Requisitos Básicos para el Diseño y Construcción. La Habana, Cuba: autor.
[9] España. Ministerio de Fomento. 2002. Norma de construcción sismorresistente: parte general y edificación. [NCSE-02]. España: autor.
[10] International Building Code (IBC). 2003. International Building Conference of Building Officials. Whittier, California
[11] Miranda E., 1997, Strength reduction factors in performance-base design, UCB/EERC-97/05. University of California, Berkeley.
[12] Uang, C. (1991) Establishing R (or RW) and CD factor for building seismic provisions. Journal of Structural Engineering ASCE, 117(1), 9-28.
[13] Whittaker, A., Hart, G. & Rojahn C. (1999). Seismic response modification factors. Journal of structural engineering, 125(4), 438-444.
[14] Riddell, R., & Newmark, N. 1979. Statistical analysis of the response of nonlinear systems subjected to earthquakes, Civil Engineering Studies, Structural Research Series. Department of Civil Engineering. University of Illinois. Illinois, USA.
[2] Applied Technology Council [ATC]–74. 1974. An evaluation of a response spectrum approach to the seismic design of buildings. Report ATC-2. California, USA: autor.
[3] Arroyo, D. y Terán, A. 2002. Factores de reducción de fuerzas sísmicas para el diseño de estructuras con sistemas pasivos de disipación de energía. Revista de Ingeniería Sísmica, 66, 73-93.
[4] Bertero, V., Anderson, J., Krawinkler, H., & Miranda, E. 1991 Design guidelines for ductility and drift limits: Review of state-of-the-practice and of the art on ductility and drift-based earthquake-resistant design of buildings, Report on Task1, A CUREe-Kajima Research Report.
[5] Caracas, Venezuela. Ministerio de Desarrollo Urbano 2001. Norma COVENIN 1756. Edificaciones Sismorresistentes, FUNVISIS. Caracas, Venezuela: autor.
[6] Comité Européen de Normalisation [CEN]. 2012. Eurocode 8, Design of structures for earthquake resistance. Bruselas, Bélgica: autor.
[7] Elnashai, A., & Mwafy, A. 2002, Overstrength and force reduction factors of multistory reinforced-concrete buildings, Struct. Design Tall Building, 11, 329-351.
[8] Cuba. Oficina Nacional de Normalización NC. 2017. NC 46:2017: Construcciones Sismorresistentes. Requisitos Básicos para el Diseño y Construcción. La Habana, Cuba: autor.
[9] España. Ministerio de Fomento. 2002. Norma de construcción sismorresistente: parte general y edificación. [NCSE-02]. España: autor.
[10] International Building Code (IBC). 2003. International Building Conference of Building Officials. Whittier, California
[11] Miranda E., 1997, Strength reduction factors in performance-base design, UCB/EERC-97/05. University of California, Berkeley.
[12] Uang, C. (1991) Establishing R (or RW) and CD factor for building seismic provisions. Journal of Structural Engineering ASCE, 117(1), 9-28.
[13] Whittaker, A., Hart, G. & Rojahn C. (1999). Seismic response modification factors. Journal of structural engineering, 125(4), 438-444.
[14] Riddell, R., & Newmark, N. 1979. Statistical analysis of the response of nonlinear systems subjected to earthquakes, Civil Engineering Studies, Structural Research Series. Department of Civil Engineering. University of Illinois. Illinois, USA.
Copyright © 2025 Grisel Morejón-Blanco, Carlos Llanes-Burón, Zenaida Paulette Frómeta-Salas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License