Application of Recycled Asphalt Pavement Aggregate in Rigid Pavement

Journal: Journal of Building Technology DOI: 10.32629/jbt.v5i2.1300

Dulce Valeria Guzmán Ortiz1, Juan Bosco Hernández Zaragoza1, Teresa López Lara1, Jaime Moisés Horta Rangel1, Diego Alberto Giraldo Posada2

1. Graduate student in the School of Engineering, Autonomous University of Querétaro, Mexico.
2. National Institute of Roads, Studies and Innovation, Colombia.


In Mexico, heavy traffic with excess loads is the main cause of pavement deterioration, which has influenced the consumption and exploitation of natural resources, thereby affecting road rehabilitation. The use of Reclaimed Asphalt Pavement (RAP) has been presented as a technique to reduce the aforementioned issues, which consists of milling the material of a flexible pavement during its rehabilitation. The objective of this work is to reuse RAP by using the Los Angeles Wearing Machine to recover fine aggregate, using it in a rigid pavement. By means of compressive strength and diametral tension tests, different mixes were evaluated: RAP in washed recovered condition, LAV, and RAP in unwashed recovered condition, SL. A control mix, MC, and the RAP in original condition, CO, were also evaluated. The aggregates of the different mixes were sieved through the No. 8 sieve to later make concrete cylinders of 10 × 20 cm. By means of compressive strength and indirect tension tests, the performance of the materials as a whole was evaluated, not only giving the use of RAP aggregates, but also showing the work in a similar way to the virgin sand aggregates. The results indicate an increase of 3.97 % in compression and 7.3 % in indirect tension with the LAV material.


reclaimed asphalt pavement; resistance; compression; indirect tensile; hydraulic concrete


I would like to express my gratitude to the National Science and Technology Commission and Pavimentar S.A. for their support throughout the entire research process.


[1] ACI Committee 211.1-91 (2009). Standard practice for selecting proportions for normal, heavyweight, and mass concrete. Farmington Hills, USA: American Concrete Institute, p. 38.
[2] Al-Oraimi, S., Hassan, H.F. & Hago, A. (2009). Recycling of reclaimed asphalt pavement in Portland cement concrete. Journal of Engineering Research, 6, 37-45. VOL6ISS1PP37-45
[3] ASTM C131 International (2014). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine.
[4] ASTM C702 International (2018). Standard practice for reducing samples of aggregate to testing size.
[5] ASTM C136 International (2014). Standard test method for sieve analysis of fine and coarse aggregates.
[6] Baamonde, A., Pérez, I. & Herrador, M. (2011). Geosintéticos en carreteras: Planteamientos para su aplicación en las capas de firme. Universidad de Coruña, pp. 1-9
[7] Delwar, M., Fahmy, M. & Taha, R. (1997). Use of reclaimed asphalt pavement as an aggregate in Portland cement concrete. ACI Materials Journal, 94(3), 251-256.
[8] Fabela, M., Jaworski, J. & Lozano, A. (1999). Proceso de remoción de carpetas asfálticas. Instituto Mexicano del Transporte, Sanfandila.
[9] Gutiérrez, J., Soria, V. & Dorado, M. (2017). Estudio estadístico de campo del autotransporte nacional. Documento Técnico Núm.71 IMT, XVIII, p. 134.
[10] Huang H. Y. (2004). Pavement analysis and design. United States of America: Ed. Pearson Prentice Hall.
[11] Hossiney, N. & Tia, M. (2010). Concrete containing RAP for use in concrete pavement. Int. J. Pavement Res. Technol., 3(5), 251-258.
[12] Hoyos, L.R, Puppala, A. J. & Ordonez, C. A. (2011). Characterization of cement-fiber-treated reclaimed asphalt pavement aggregates: Preliminary investigation. Journal of Materials in Civil Engineering, 23(7), pp. 52-115.
[13] Izaks, R., Haritonovs, V. & Zaumanis, M. (2015). Bituminous mixtures and pavements VI. First trial to design up to 50 % recycled hot mix asphalt in Latvia. London, United Kingdom: A.F. Nikolaides.
[14] IS 383 (1970). Specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standard, New Delhi.
[15] M.MMP.2.02.020. (2018). Método de muestreo y prueba de materiales. Finura del Cemento por el Método del Tamiz. SCT.
[16] M.MMP.2.02.023. (2018). Métodos de muestreo y prueba de materiales. Masa Volumétrica de los Agregados Pétreos. SCT.
[17] M.MMP.2.02.056. (2006). Método de muestreo y prueba de materiales. Revenimiento del Concreto Fresco. SCT.
[18] M-MMP-2-02-059 (2004). Normativa para la infraestructura del transporte. Resistencia a la Tensión en Cilindros de Concreto, SCT-IMT, México.
[19] Martínez, G., Martínez, M. & Martínez, E. (2013). Concreto polimé-rico reforzado con fibras de Luffa. Información Tecnológica, 24(4), 15-16.
[20] Monti, A., Shen, H. & Khodair, Y. (2016). Characteristics of self-consolidating concrete with RAP and SMC. Construction and Boulding Material, 102. 564-573. conbuildmat.2015.11.007
[21] NMX-C-159-ONNCCE. (2016). Elaboración y curado de especí-menes de ensayo. Industria de la Construcción, ONNCCE.
[22] NMX-C-083-ONNCE. (2014). Determinación de la resistencia a la compresión de especímenes. Industria de la Construcción, ONNCE.
[23] Okafor, F. O. (2010). Performance of recycled asphalt pavement as coarse aggregate in concrete. Leonardo Electronic J. Prac. Techno., 17, 47-58.
[24] Rivera L., G. A. (2000). Resistencia del concreto. Cap. 6, pp. 121-151.
[25] Singh, S., Ransinchung, G.D. & Kumar, P. (2017). An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Material, vol. 148, 734-747.

Copyright © 2023 Dulce Valeria Guzmán Ortiz, Juan Bosco Hernández Zaragoza, Teresa López Lara, Jaime Moisés Horta Rangel, Diego Alberto Giraldo Posada

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License