Contribution of High-Andean ecosystems in providing the water regulation ecosystem service

Journal: Region - Water Conservancy DOI: 10.32629/rwc.v8i1.3425

Ronal  Cervantes1, José Miguel  Sánchez2, Julio  Alegre2, Eric  Rendón2, Jan R. Baiker3, Bruno  Locatelli4, Vivien  Bonnesoeur5

1. Universidad Nacional Agraria la Molina, Perú; Superintendencia Nacional de Servicios de Saneamiento (SUNASS), Perú
2. Universidad Nacional Agraria la Molina, Perú
3. Programa Bosques Andinos, HELVETAS Swiss Intercooperation, Perú; Asociación para la Conservación y Estudio de Montañas Andinas-Amazónicas (ACEMAA), Perú; Iniciativa Regional de Monitoreo Hidrológico de Ecosistemas Andinos (iMHEA), Perú; University of Zurich, Suiza
4. Centro para la Investigación Forestal Internacional (CIFOR, por sus siglas en inglés), Perú; Universidad de Montpellier, Francia
5. Consorcio para el Desarrollo de la Ecorregión Andina (CONDESAN), Perú

Abstract

The ecosystem service of water regulation is one of the most important services provided by high Andean ecosystems. However, knowledge about its contribution in terms of water is still scarce and its estimation is difficult, due to the complex eco-hydrological and climatic processes and environmental characteristics of the Andes. Therefore, we estimated the influence of three types of ecosystems (humid puna grassland, tropical high-Andean wetland -- bofedal and Polylepis forest) on water flows, particularly the flows that are directed towards underground storage, which are equivalent to the ecosystem service of water regulation. This study was carried out during the hydrological year 2018 - 2019 in the hydrographic unit of Rontoccocha, between 3,900 and 4,635 masl, in the Department of Apurimac, Peru. For this purpose, the water balance for each type of ecosystem was modeled with the eco-hydrological tool Hydrobal. Variables of: a) vegetation, b) climatic parameters and c) soil characteristics were used. The results reveal the contribution of vegetation cover in water regulation. In each ecosystem, about 15% of all rainfall in the basin reaches underground storage. These data, extrapolated to the entire hydrographic unit, show that the humid puna grassland regulates 80%, the bofedal 17% and the Polylepis forest 3%. Although the evaluation was carried out separately for each ecosystem, for management purposes, it is necessary to address them in an integrated manner, given that there are interdependent relationships between them.

Keywords

Andes; humid puna grassland; tropical high-Andean wetland; Polylepis forest; water balance

References

[1] Bellot J. & Chirino E. 2013. Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecological Modelling, 266: 3041. https://doi.org/10.1016/j.ecolmodel.2013.07.002.
[2] Billings W.D. 1974. Adaptations and origins of alpine plants. Arctic and Alpine Research, 6(2): 129-142. https://www.tandfonline.com/doi/abs/10.1080/00040851.1974.12003769
[3] Bonnesoeur V., Locatelli B., Ochoa-Tocachi B., Vanacker V., Mao Z., Stokes A. & Mathez-Stiefel S. 2019. Impacts of forests and forestation on hydrological services in the Andes: a systematic review. Forest Ecology and Management, 433: 569-584. https://doi.org/10.1016/j.foreco.2018.11.033.
[4] Brown C., Reyers B., Ingwall-King L., Mapendembe A., Nel J., O'Farrell P., Dixon M. & Bowles-Newark N. 2014. Measuring ecosystem services: guidance developing ecosystem services indicators. Cambridge, UK: UNEP-WCMC.
[5] Buytaert W., Célleri R., De Bièvre B., Cisneros F., Wyseure G., Deckers J. & Hofstede R. 2006. Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1-2): 53-72. https://doi.org/10.1016/j.earscirev.2006.06.002.
[6] Cohen-Shacham E., Walters G., Janzen C. & Maginnis S. 2016. Nature-based Solutions to address global societal challenges. Gland, Switzerland: UICN. https://doi.org/10.2305/IUCN.CH.2016.13.en.
[7] ESA. 2018. Copernicus open access hub. ESA (The European Space Agency) Consultado en junio de 2019 de: https://scihub.copernicus.eu/.
[8] GRA. 2010. Zonificación ecológica y económica de la región Apurímac-ZEE. GRA (Gobierno Regional de Apurímac). Abancay, Apurímac, Perú.
[9] GRA. 2013. Hidrología de la cuenca del río Mariño. Un estudio definitivo del proyecto de gestión integral de la microcuenca Mariño-Apurímac. U.E. Pro Desarrollo Apurímac. GRA (Gobierno Regional de Apurímac). Abancay, Perú.
[10] Hasan H. & Khan A. 2019. Groundwater and Surface Water Interaction (Chapter 14). In: Venkatramanan S., Prasanna M.V. & Chung S.-Y. (eds). GIS and Geostatistical Techniques for Groundwater Science. 197-207. Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-12-815413-7.00014-6.
[11] Hayashi M. & Van der Kamp G. 2000. Simple equation to present the volume-area-depth relations of shallow wetlands in small topographic depressions. Journal of Hydrology, 237(1-2): 74-85. 
https://doi.org/10.1016/S0022-1694(00)00300-0.
[12] Körner C., Neumayer M., Pelaez S. & Smeets-Scheel A. 1989. Functional Morphology of Mountain Plants. Flora, 182(5-6): 353-383. https://doi.org/10.1016/S0367-2530(17)30426-7.
[13] Körner C. 2003. Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems. 2 ed. Springer. Basilea, Suiza. https://doi.org/10.1007/978-3-642-18970-8.
[14] León F. 2016. Inversión en infraestructura natural: haciendo sostenibles las inversiones en infraestructura física. Cooperación Alemana al Desarrollo – Agencia de la GIZ en el Perú. Lima.
[15] Llambí L., Soto A., Célleri R., De Bievre B., Ochoa B. & Borja P. 2012. Páramos Andinos: Ecología, hidrología y suelos de páramos. Proyecto Páramo Andino: CONDESAN, Instituto Humboldt (Colombia), EcoCiencia, Instituto de Montaña, ICAE (Instituto de Ciencias Ambientales y Ecológicas), GEF, UNEP, etc.). 
https://www.portalces.org/sites/default/files/references/040_LLamb%C3%AD%20et%20al.%202012.PP-Ecologia%20Hidrologia%20y%20Suelos%20de%20Paramos_0.pdf.
[16] Lynn Hood J., W Roy J. & Hayashi M. 2006. Importance of ground water in the water balance of alpine headwater lake. Geophysical Research Letters, 33(13): 1-5. https://doi.org/10.1029/2006GL026611.
[17] MINAM. 2019. RM N° 178-2019-MINAM: Lineamientos para la formulación de proyectos de inversión en las tipologías de ecosistemas, especies y apoyo al uso sostenible de la biodiversidad. El Peruano (Normas Legales), 36(14969): 7-8. Domingo 9 de Junio de 2019. MINAM (Ministerio del Ambiente). Lima/ Perú. 
https://busquedas.elperuano.pe/download/url/aprueban-los-lineamientos-para-la-formulacion-de-proyectos-resolucion-ministerial-n-178-2019-minam-1777515-1.
https://cdn.www.gob.pe/uploads/document/file/319848/RM_N__178-2019.pdf.
[18] Ochoa-Tocachi B., Buytaert W., De Bièbre B., Célleri R., Crespo P., Villacís M., Llerena CA., Acosta L., Villazón M., Guallpa M., Gil-Ríos J., Fuente P., Olaya D., Viñas P., Rojas G. & Arias S. 2016. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrological Processes, 30(22): 4074-4089. https://doi.org/10.1002/hyp.10980.
[19] Somers L. & McKenzie J. 2020. A review of groundwater in high mountain environments. Wires Water, 7(6): e1475. https://doi.org/10.1002/wat2.1475.
[20] Sprenger F. 1978. Determination of direct runoff with the curve number method in the coastal area of Tanzania/East Africa. Wasser Boden, I: 13-16.
[21] Touhami I. 2014. Estimación del balance hídrico y de la recarga en el acuífero Ventós - Castellar (SE España). Efectos del cambio climático. Tesis Ph.D. España, Alicante, Universidad de Alicante. URI: http://hdl.handle.net/10045/41923.
[22] Tranquillini W. 1964. The physiology of plants at high altitudes. Annual Review of Plant Physioogyl, 15: 345-362. https://doi.org/10.1146/annurev.pp.15.060164.002021.
[23] USGS. 2016. Natural Processes of ground-water and surface-water interaction. In: Winter T.C., Harvey J.W., Franke O.L. & Alley W.M. Ground Water and Surface Water a Single Resource (https://pubs.usgs.gov/circ/circ1139/). USGS (United States Geological Survey), Circular 1139. Consultado en enero de 2020 de: https://pubs.usgs.gov/circ/circ1139/htdocs/natural_processes_of_ground.htm.
[24] USDA. 2016. Natural Resources Conservation Service. Soil Water Characteristics. USDA (United States Department of Agriculture). Consultado en abril de 2020 de: https://www.nrcs.usda.gov/.
[25] Valencia-Leguizamón J. & Tobón C. 2017. Influencia de la vegetación en el funcionamiento hidrológico de cuencas de humedales de alta montaña tropical. Ecosistemas, 26(2): 10-17. DOI: 10.7818/ECOS.2017.26-2.02.
[26] Vallet A., Locatelli B., Levrel H., Dendoncker N., Barnaud C. & Quispe Y. 2019. Linking equity, power and stakeholders' roles in relation to ecosystem services. Ecology and Society, 24(2): Art. 14. https://doi.org/10.5751/ES-10904-240214.
[27] Vallet A. Locatelli B. & Pramova E. 2020. Servicios ecosistémicos y equidad social: ¿quién controla, quién se beneficia y quién pierde? Infobrief, (311): 1-8. Traducción del No. 307 de November 2020. https://doi.org/10.17528/cifor/007850.
[28] Viviroli D., Durr H., Messerli B., Meybeck M. & Weingartner R. 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resource Research, 43(7): 1-13. https://doi.org/10.1029/2006WR005653

Copyright © 2025 Ronal  Cervantes, José Miguel  Sánchez, Julio  Alegre, Eric  Rendón, Jan R. Baiker, Bruno  Locatelli, Vivien  Bonnesoeur

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License