Methodology for the calculation of hydrokinetic turbines for tributary rivers of the Amazon in Bolivia

Journal: Region - Water Conservancy DOI: 10.32629/rwc.v7i1.2600

M.Sc. Pascual Maldonado López, Ing. Cristhian Enrique Guzmán Pascual, M.Sc. Melisa Maldonado Nogales

Universidad Mayor de San Simón Cochabamba – Bolivia

Abstract

Hydrokinetic turbines are hydraulic machines that harness the kinetic energy of water currents through passage, which do not require civil works infrastructure for installation and are ideal for harnessing energy in small powers from 1 to 10 kW. They are suitable for supplying energy to up to three families for use in lighting and household appliances. The design and manufacture of these turbines has shortcomings due to the lack of a detailed procedure, even more so in developing countries using appropriate technology for their application. This project develops a selection procedure for turbine blades according to the efficiency of lift and drag coefficients developed by Xfoil algorithm, then this selection proceeds to the power analysis that develops the turbine according to the BEM methodology, particularly gives emphasis to the procedure of calculating the power for different conditions of rotation depending on the angle of attack of the fluid in blade and also analyzes the blade pitch angle. The present study clarifies the behavior of the hydrokinetic turbine for different rotations and river water velocities, which can take better advantage of the power, meaning that the developed program can plot a power curve of the hydrokinetic turbine in order to establish the optimal rotation, angle of attack, pitch angle and diameter of the turbine. The program developed in Excel also allows exporting the blade geometry optimized for a power and water speed, exporting it through macros in Visual Basic for the design software SolidWorks the final geometry, in order to make the analysis of mechanical resistance and behavior with the fluid in ANSYS CFD software. For this study, a review of approximately 60 theses was carried out and it was concluded that there is no clear procedure to determine the power according to the above variables. The methodology used is absolutely theoretical analysis with the BEM methodology, but the behavior of the fluid inside the turbine was verified in ANSYS CFD software to complete and establish the pressures exerted by the water flow on the blades and in such a way to analyze the residence of the blades and to validate the water wake in order to rule out the turbulence that could cause vibrations in the rotor with Qblade software.

Keywords

mechanical design; hydraulic energy; clean and sustainable energy; appropriate technology; change of energy matrix

References

[1] Maldonado, Pascual. 2022. Validación Turbina Hidrocinética, Santa Cruz: Ende Guaracachi S.A.
[2] Volpe, Nahuel José; Zeitler, Federico Ezequiel. 2020. Diseño de Turbina Hidrocinética Optimizada Aumentada con Difusor, Santa Fe: Tesis, Universidad Tecnológica Nacional FRSF,
[3] Robles, Aitor. 2015. Diseño de perfiles aerodinámicos mediante metodología inversa, Sevilla, Universidad de Sevilla,
[4] Egúsquiza, Manuel Alejandro. 2020. Diseño y Simulación de un Rotor para Turbina Hidrocinética de 15 kW aplicada al Río Huallaga, Lima: Tesis UTEC.
[5] López, Oriol, 2021. Estudio Aerodinámico de un Perfil Naca, Cataluña: Tesis Universidad politécnica de Cataluña.
[6] Avendaño, Diego. 2011. Investigación sobre perfiles aerodinámicos de aeronaves utilitarias, México, Tesis, ESIME.
[7] Gizachew, Dereje1; Belete, Sirahbizu, 2019. Design and Analysis of 2MW Horizontal Axis Wind Turbine Blade, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 6 Issue 5.
[8] Miranda, Pilar; Marroyo, Luis. 2011. Diseño y desarrollo de una turbina hidroeléctrica flotante para generar energía eléctrica en comunidades de la cuenca amazónica boliviana, Cochabamba, Tesis Universidad de Navarra.
[9] Chandrala, Monir; Choubey, Abhishek, 2012. Aerodynamic Analysis Of Horizontal Axis Wind Turbine Blade, IJERA, Vol. 2, Issue 6.
[10] Logsdon, Nathan. 2006. A procedure for numerically analyzing airfoils and Wing sections, Missouri: The Faculty of the Department of Mechanical & Aerospace Engineering University of Missouri – Columbia.
[11] Maldonado, Francisco. 2005. Diseño de una turbina de río para la generación de electricidad en el distrito de Mazán-Región Loreto, Lima: Tesis universidad Nacional Mayor de San Marcos, monografía técnica. https://www.grc.nasa.gov/www/k-12/BGP/Donna/t_w_ratio_intro.htm www.airfoiltools.com https://qblade.org
https://www.mh-aerotools.de/airfoils/javafoil.htm
http://airfoiltools.com/search/index?m%5BtextSearch%5D=go&m%5BmaxCamber%5D =&m%5BminCamber%5D=&m%5BmaxThickness%5D=&m%5BminThickness%5D
=&m%5Bgrp%5D=&m%5Bsort%5D=1&m%5Bpage%5D=14&m%5Bcount%5D=412
http://web.mit.edu/drela/Public/web/xfoil/
https://texample.net/tikz/examples/airfoil-profiles/
https://bigfoil.com/
http://www.hq-modellflug.de/reportagen.htm#AS%2035-RCFA
https://m-selig.ae.illinois.edu/ads/frink/airfoils.html
http://www.bolivian.com/bolivia/hidrografia.html
www.energiasustentaveldobrasil.com.br

Copyright © 2024 M.Sc. Pascual Maldonado López, Ing. Cristhian Enrique Guzmán Pascual, M.Sc. Melisa Maldonado Nogales

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License