ON n-VNL-modules and SVNL-modules

Journal: Region - Educational Research and Reviews DOI: 10.32629/rerr.v2i4.219

Le Cheng, Hui Wang

Department of Mathmatics and Computer Science, HeTao College

Abstract

A ring R is called right n-VNL-ring if whenever a1R+a2R+...+anR=R for some elements a1,a2,...anR, there exists at least one element  aregular. The aim of this paper is to generalize this concept into module classes, we define n-VNL-modules, study their properties and give some characterizations. It is proved that for any finite generated R- module M, M is an SVNL-module if and only if M is an n-VNL-module for every positive integer n. The locally projective n-VNL-modules are also be characterized. We discuss the relationship between n-VNL-modules and other modules under different conditions.

Keywords

n-VNL-ring; n-VNL-module; SVNL-ring; SVNL-module

Funding

This research was supported by the Natural Science Foundations of HeTao College (HYZQ201945): Research on Generalization and Application of VNL Rings.

References

[1] Contessa M. (1984). On Certain Classes of PM-rings. Communications in Algebra, (12): 1447-1469.
[2]Osba E.A., Henriksen M. and Alkam O. (2004). Combining Local and Von Neumann Regular Rings. Communications in Algebra, (32): 2639-2653.
[3]Chen J.L. and Ying Z.L. (2008). On VNL-rings and n-VNL-rings. International Electronic Journal of Algebra, (4): 1-8.
[4]Cheng L., Yang S.S. and Zhang X.J. (2015). Generalization of Strongly Von Neumann Local Ring. Journal of HuaiHai Institute of Technology, 100(2): 1-3.
[5]Cheng L. and Chen J.L. (2015). NJ Modules and SNJ Modules. Journal of NanJing University (Mathematical Biquarterly), 032(001): 89-95.
[6]Chen W.X. and Tong W.T. (2006). On Noncommutative VNL-rings and GVNL Rings. Glasgow Math, (48): 11-17.
[7] Nicholson W.K. (1973). Rings Whose Elements are Quasi-regular or Regular. Aequationes Mathematicae, (9): 64-70.
[8] Roger W. (1972). Endomorphism Rings of Projective Modules. Transactions of the American Mathematical Society, (155): 233-256.
[9] Zelmanowitz J. (1972). Regular Modules. Transactions of the American Mathematical Society, (163): 341-355.
[10] Goro A. (1990). Some Characterizations of Regular Modules. Publications Matemàtiques, (34): 241-248.
[11] Jayaraman M. and Vanaja N. (2007). Generalization of Regular Modules. Communications in Algebra, (35): 3331-3345.

Copyright © 2020 Le Cheng, Hui Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License