Research Progress on Astrocyte-Mediated Inflammatory Responses in Alzheimer's Disease
Journal: Journal of Clinical Medicine Research DOI: 10.32629/jcmr.v6i1.3716
Abstract
In Alzheimer’s disease (AD) pathogenesis, astrocytes have a dual role. They can trigger neuroinflammatory responses, worsening neuronal damage, but also exert anti-inflammatory and metabolic support functions, protecting neurons. Normally, astrocytes are crucial for neuronal survival and function. But in AD, they undergo morphological and molecular changes, becoming reactive and shifting between neurosupportive and neurotoxic roles. Reactive astrocytes are categorized into the neurotoxic A1 type, which secrete inflammatory factors and intensify central inflammation, and the neuroprotective A2 type, which release neurotrophic factors and curb inflammation. This article will explore astrocyte inflammation mechanisms and review their dynamic changes during AD progression, aiming to offer new insights for AD pathogenesis research.
Keywords
Alzheimer's disease; Astrocytes; Neuroinflammation
Full Text
PDF - Viewed/Downloaded: 4 TimesReferences
[1] Ding, Z.B.; Song, L.J.; Wang, Q.; Kumar, G.; Yan, Y.Q.; Ma, C.G. Astrocytes: A Double-Edged Sword in Neurodegenerative Diseases. Neural Regen. Res. 2021, 16, 1702–1710.
[2] Ciurea, A.V.; Mohan, A.G.; Covache-Busuioc, R.A.; Costin, H.P.; Saceleanu, V.M. The Brain’s Glymphatic System: Drawing New Perspectives in Neuroscience. Brain Sci. 2023, 13, 1005.
[3] Neal, M.; Luo, J.; Harischandra, D.S.; Gordon, R.; Sarkar, S.; Jin, H.; Anantharam, V.; Désaubry, L.; Kanthasamy, A.; Kanthasamy, A. Prokineticin-2 Promotes Chemotaxis and Alternative A2 Reactivity of Astrocytes. Glia 2018, 66, 2137–2157.
[4] Islam, M.T. Oxidative Stress and Mitochondrial Dysfunction-Linked Neurodegenerative Disorders. Neurol. Res. 2017, 39, 73–82.
[5] Wang, X.F.; Cynader, M.S. Astrocytes Provide Cysteine to Neurons by Releasing Glutathione. J. Neurochem. 2002, 74, 1434–1442.
[6] Ye, B.; Shen, H.; Zhang, J.; Zhu, Y.-G.; Ransom, B.R.; Chen, X.-C.; Ye, Z.-C. Dual Pathways Mediate β-Amyloid Stimulated Glutathione Release from Astrocytes. Glia 2015, 63, 2208–2219.
[7] Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G: Biomarkers in Alzheimer's disease: are olfactory neuronal precursors useful for antemortem biomarker research?. Brain Sci. 2024, 14:46. 10.3390/brainsci14010046.
[8] de Souza LC, Sarazin M, Teixeira-Júnior AL, Caramelli P, Santos AE, Dubois B: Biological markers of Alzheimer's disease. Arq Neuropsiquiatr.2014,72:227-31. 10.1590/0004-282x20130233.
[9] Bailey P: Biological markers in Alzheimer's disease. Can J Neurol Sci. 2007, 34 Suppl 1:S72-6.10.1017/s0317167100005618.
[10] Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TC, et al. (2022). Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen, 42:31.
[11] Yang L, Wu C, Parker E, Li Y, Dong Y, Tucker L, et al. (2022). Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics, 12:2205-2231.
[12] Wu C, Zou P, Feng S, Zhu L, Li F, Liu TC, et al. (2023). Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol, 60:1749-1765.
[13] Nirzhor SSR, Khan RI, Neelotpol S (2018). The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy.Biomolecules, 8.
[14] Sajja VS, Hlavac N, VandeVord PJ (2016). Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. Front Integr Neurosci, 10:7.
[15] Fan YY, Huo J (2021). A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int, 148:105080.
[16] Leng F, Edison P (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol, 17:157-172.
[17] Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. (2020). Diseaseassociated astrocytes in Alzheimer's disease and aging. Nat Neurosci, 23:701-706.
[18] Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One. 2014;9:e92325.
[19] Shi ZM, Han YW, Han XH, et al. Upstream regulators and down- stream effectors of NF-kappaB in Alzheimer’s disease. J Neurol Sci. 2016;366:127-134.
[20] Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza- Salamanca D, Mora-Munoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.
[21] Lian H, Yang L, Cole A, et al. NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron. 2015;85:101-115.
[22] Conductier, G.; Blondeau, N.; Guyon, A.; Nahon, J.L.; Rovere, C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J. Neuroimmunol. 2010, 224, 93–100.
[23] Calovi, S.; Mut-Arbona, P.; Sperlagh, B. Microglia and the Purinergic Signaling System. Neuroscience 2019, 405, 137–147.
[24] Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Munch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487.
[25] Liu, L.R.; Liu, J.C.; Bao, J.S.; Bai, Q.Q.; Wang, G.Q. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024.
[26] Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2019, 25, 227–240. 80. Linnerbauer, M.; Wheeler, M.A.; Quintana, F.J. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020, 108, 608–622.
[27] Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416.
[28] Han, R.T.; Kim, R.D.; Molofsky, A.V.; Liddelow, S.A. Astrocyte-immune cell interactions in physiology and pathology. Immunity 2021, 54, 211–224.
[2] Ciurea, A.V.; Mohan, A.G.; Covache-Busuioc, R.A.; Costin, H.P.; Saceleanu, V.M. The Brain’s Glymphatic System: Drawing New Perspectives in Neuroscience. Brain Sci. 2023, 13, 1005.
[3] Neal, M.; Luo, J.; Harischandra, D.S.; Gordon, R.; Sarkar, S.; Jin, H.; Anantharam, V.; Désaubry, L.; Kanthasamy, A.; Kanthasamy, A. Prokineticin-2 Promotes Chemotaxis and Alternative A2 Reactivity of Astrocytes. Glia 2018, 66, 2137–2157.
[4] Islam, M.T. Oxidative Stress and Mitochondrial Dysfunction-Linked Neurodegenerative Disorders. Neurol. Res. 2017, 39, 73–82.
[5] Wang, X.F.; Cynader, M.S. Astrocytes Provide Cysteine to Neurons by Releasing Glutathione. J. Neurochem. 2002, 74, 1434–1442.
[6] Ye, B.; Shen, H.; Zhang, J.; Zhu, Y.-G.; Ransom, B.R.; Chen, X.-C.; Ye, Z.-C. Dual Pathways Mediate β-Amyloid Stimulated Glutathione Release from Astrocytes. Glia 2015, 63, 2208–2219.
[7] Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G: Biomarkers in Alzheimer's disease: are olfactory neuronal precursors useful for antemortem biomarker research?. Brain Sci. 2024, 14:46. 10.3390/brainsci14010046.
[8] de Souza LC, Sarazin M, Teixeira-Júnior AL, Caramelli P, Santos AE, Dubois B: Biological markers of Alzheimer's disease. Arq Neuropsiquiatr.2014,72:227-31. 10.1590/0004-282x20130233.
[9] Bailey P: Biological markers in Alzheimer's disease. Can J Neurol Sci. 2007, 34 Suppl 1:S72-6.10.1017/s0317167100005618.
[10] Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TC, et al. (2022). Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen, 42:31.
[11] Yang L, Wu C, Parker E, Li Y, Dong Y, Tucker L, et al. (2022). Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics, 12:2205-2231.
[12] Wu C, Zou P, Feng S, Zhu L, Li F, Liu TC, et al. (2023). Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol, 60:1749-1765.
[13] Nirzhor SSR, Khan RI, Neelotpol S (2018). The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy.Biomolecules, 8.
[14] Sajja VS, Hlavac N, VandeVord PJ (2016). Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction. Front Integr Neurosci, 10:7.
[15] Fan YY, Huo J (2021). A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int, 148:105080.
[16] Leng F, Edison P (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol, 17:157-172.
[17] Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. (2020). Diseaseassociated astrocytes in Alzheimer's disease and aging. Nat Neurosci, 23:701-706.
[18] Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One. 2014;9:e92325.
[19] Shi ZM, Han YW, Han XH, et al. Upstream regulators and down- stream effectors of NF-kappaB in Alzheimer’s disease. J Neurol Sci. 2016;366:127-134.
[20] Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza- Salamanca D, Mora-Munoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.
[21] Lian H, Yang L, Cole A, et al. NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron. 2015;85:101-115.
[22] Conductier, G.; Blondeau, N.; Guyon, A.; Nahon, J.L.; Rovere, C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J. Neuroimmunol. 2010, 224, 93–100.
[23] Calovi, S.; Mut-Arbona, P.; Sperlagh, B. Microglia and the Purinergic Signaling System. Neuroscience 2019, 405, 137–147.
[24] Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Munch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487.
[25] Liu, L.R.; Liu, J.C.; Bao, J.S.; Bai, Q.Q.; Wang, G.Q. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020, 11, 1024.
[26] Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2019, 25, 227–240. 80. Linnerbauer, M.; Wheeler, M.A.; Quintana, F.J. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020, 108, 608–622.
[27] Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416.
[28] Han, R.T.; Kim, R.D.; Molofsky, A.V.; Liddelow, S.A. Astrocyte-immune cell interactions in physiology and pathology. Immunity 2021, 54, 211–224.
Copyright © 2025 Baolan Li, Zimeng Hu, Xiang Chang

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License