Multimodality Molecular Imaging of Stem Cells Therapy of Myocardial Infarction

Journal: Journal of Clinical Medicine Research DOI: 10.32629/jcmr.v3i3.1012

Ligong Xu1, Zhenwei Li1, Shuang Wu2

1. Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
2. Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

Abstract

Stem cell therapy in patients with acute myocardial infarction promises a new exciting option. However, the long term fate of stem cells transplanted into myocardial is not clear. Molecular imaging play a vital role in tracking stem cells after intramyocardial delivery as well as in helping us understand the mechanisms of stem cell biology in vivo. In this review, we summarize the principles underlying four kinds of stem cells applied into myocardial infarction and the major tracking methods. Finally, we discuss that molecular imaging will be useful to the successful clinical implementation of this novel therapy.

Keywords

myocardial infarction, stem cells, imaging, positron emission tomography, magnetic resonance imaging, bioluminescence

Funding

The Traditional Medicine Science and Technology Plan Project of Zhejiang Province (No. 2019ZQ034); The National Science Foundation of Zhejiang Province (LQ19H180009)

References

[1]Zhang, W.Y., A.D. Ebert, J. Narula, and J.C. Wu, Imaging cardiac stem cell therapy: translations to human clinical studies. J Cardiovasc Transl Res, 2011. 4(4): p. 514-22.
[2]Hodgson DM, B.A., Zingman LV, Kane GC, Perez-Terzic C, and P.M. Alekseev AE, and Terzic A., Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol, 2004. 287: H471–H479.
[3]MJ., E. and K. MH., Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819):154–6.
[4]Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
[5]Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
[6]Leeper, N.J., A.L. Hunter, and J.P. Cooke, Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation, 2010. 122(5): p. 517-26.
[7]Friedenstein, A.J., R.K. Chailakhyan, N.V. Latsinik, A.F. Panasyuk, and I.V. Keiliss-Borok, Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974. 17(4): p. 331-40.
[8]Caplan, A.I., Mesenchymal stem cells. J Orthop Res, 1991. 9(5): p. 641-50.
[9]Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
[10]Shen, J.F., A. Sugawara, J. Yamashita, H. Ogura, and S. Sato, Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci, 2011. 3(3): p. 117-24.
[11]Fraser, J.K., I. Wulur, Z. Alfonso, and M.H. Hedrick, Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol, 2006. 24(4): p. 150-4.
[12]Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
[13]Tamir Rashid, S. and G.J. Alexander, Induced pluripotent stem cells: from nobel prize to clinical applications. J Hepatol, 2012.
[14]Geoghegan, E. and L. Byrnes, Mouse induced pluripotent stem cells. Int J Dev Biol, 2008. 52(8): p. 1015-22.
[15]Ruggiero, A., D.L. Thorek, J. Guenoun, G.P. Krestin, and M.R. Bernsen, Cell tracking in cardiac repair: what to image and how to image. Eur Radiol, 2012. 22(1): p. 189-204.
[16]Gu, E., W.Y. Chen, J. Gu, P. Burridge, and J.C. Wu, Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics, 2012. 2(4): p. 335-45.
[17]Jiang, H., Z. Cheng, M. Tian, and H. Zhang, In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging, 2011. 38(4): p. 774-84.
[18]Zhang, Y., M. Ruel, R.S. Beanlands, R.A. deKemp, E.J. Suuronen, and J.N. DaSilva, Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des, 2008. 14(36): p. 3835-53.
[19]Lau, J.F., S.A. Anderson, E. Adler, and J.A. Frank, Imaging approaches for the study of cell-based cardiac therapies. Nat Rev Cardiol, 2010. 7(2): p. 97-105.
[20]Tallheden, T., U. Nannmark, M. Lorentzon, O. Rakotonirainy, B. Soussi, F. Waagstein, A. Jeppsson, E. Sjogren-Jansson, A. Lindahl, and E. Omerovic, In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci, 2006. 79(10): p. 999-1006.
[21]Cao, F., S. Lin, X. Xie, P. Ray, M. Patel, X. Zhang, M. Drukker, S.J. Dylla, A.J. Connolly, X. Chen, I.L. Weissman, S.S. Gambhir, and J.C. Wu, In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 2006. 113(7): p. 1005-14.
[22]Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev, 2003. 17(5): p. 545-80.
[23]Behfar, A., L.V. Zingman, D.M. Hodgson, J.M. Rauzier, G.C. Kane, A. Terzic, and M. Puceat, Stem cell differentiation requires a paracrine pathway in the heart. FASEB J, 2002. 16(12): p. 1558-66.
[24]Kofidis, T., D.R. Lebl, E.C. Martinez, G. Hoyt, M. Tanaka, and R.C. Robbins, Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 2005. 112(9 Suppl): p. I173-7.
[25]Min, J.Y., Y. Yang, K.L. Converso, L. Liu, Q. Huang, J.P. Morgan, and Y.F. Xiao, Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol, 2002. 92(1): p. 288-96.
[26]Min, J.Y., Y. Yang, M.F. Sullivan, Q. Ke, K.L. Converso, Y. Chen, J.P. Morgan, and Y.F. Xiao, Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg, 2003. 125(2): p. 361-9.
[27]Wu, J.C., J.M. Spin, F. Cao, S. Lin, X. Xie, O. Gheysens, I.Y. Chen, A.Y. Sheikh, R.C. Robbins, A. Tsalenko, S.S. Gambhir, and T. Quertermous, Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiol Genomics, 2006. 25(1): p. 29-38.
[28]Schachinger, V., S. Erbs, A. Elsasser, W. Haberbosch, R. Hambrecht, H. Holschermann, J. Yu, R. Corti, D.G. Mathey, C.W. Hamm, et al., Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med, 2006. 355(12): p. 1210-21.
[29]Beeres, S.L., J.J. Bax, P. Dibbets-Schneider, M.P. Stokkel, W.E. Fibbe, E.E. van der Wall, M.J. Schalij, and D.E. Atsma, Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results. Am Heart J, 2006. 152(4): p. 684 e11-6.
[30]Abdel-Latif, A., R. Bolli, I.M. Tleyjeh, V.M. Montori, E.C. Perin, C.A. Hornung, E.K. Zuba-Surma, M. Al-Mallah, and B. Dawn, Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med, 2007. 167(10): p. 989-97.
[31]Laflamme, M.A., S. Zbinden, S.E. Epstein, and C.E. Murry, Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu Rev Pathol, 2007. 2: p. 307-39.
[32]Segers, V.F. and R.T. Lee, Stem-cell therapy for cardiac disease. Nature, 2008. 451(7181): p. 937-42.
[33]Zachar, V., M. Duroux, J. Emmersen, J.G. Rasmussen, C.P. Pennisi, S. Yang, and T. Fink, Hypoxia and adipose-derived stem cell-based tissue regeneration and engineering. Expert Opin Biol Ther, 2011. 11(6): p. 775-86.
[34]Yang, J.J., Z.Q. Liu, J.M. Zhang, H.B. Wang, S.Y. Hu, J.F. Liu, C.Y. Wang, and Y.D. Chen, Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessels, 2012.
[35]Rubart, M. and L.J. Field, ES cells for troubled hearts. Nat Biotechnol, 2007. 25(9): p. 993-4.
[36]Kawamura, M., S. Miyagawa, K. Miki, A. Saito, S. Fukushima, T. Higuchi, T. Kawamura, T. Kuratani, T. Daimon, T. Shimizu, T. Okano, and Y. Sawa, Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 2012. 126(11 Suppl 1): p. S29-S37.

Copyright © 2022 Ligong Xu, Zhenwei Li, Shuang Wu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License