Mitigation of Damage Caused by Cracks in the Soil
Journal: Journal of Building Technology DOI: 10.32629/jbt.v7i1.3622
Abstract
The design of a trench of granular material is shown. This design can be used to mitigate the damages caused by cracks that have appeared in the soil in certain zones of Mexico City. The most destructive cracks are associated with differential settlements due to the regional subsidence of Mexico City and can show escarpments of considerable height. The proposal solution consists of constructing a trench of sand on the crack line, called "Dissipative box of unit deformations". The trench behavior is assessed by means of numerical simulations with discontinuous media approach using the discrete element method. It is drawn that the unit deformations (differential settlements/horizontal distances) on the surface decrease when the depth of trench increases. The simulations allow to obtain an optimal design of the dissipative box distributing the vertical displacements in a sufficient horizontal length so that the escarpment disappears and is replaced by a surface with moderate inclination. In this way, a road affected by a crack can continue open to traffic. Continuous media analyses are also presented, and their results are compared with those of the discrete media approach. Some conclusions and practical recommendations for the mitigation of damage caused by cracks are given.
Keywords
crack; trench; granular medium; dissipative box; soil; unit deformations
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] Auvinet G. (2010). Soil fracturing induced by land subsidence. En Land subsidence, Associated Hazards and the Role of Natural Resources Development. IAHS Publication 339, pp 20-26.
[2] Auvinet G., Méndez E. & Juárez M. (2013a). Soil fracturing induced by land subsidence in Mexico City. En Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, International Society for Soil Mechanics and Geotechnical Engineering, Paris, Francia.
[3] Auvinet G., Méndez E. & Juárez M. (2013b). Evaluation of regional subsidence and soil fracturing in Mexico City Valley. En Proceedings of the Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina.
[4] Auvinet G., Méndez E. & Juárez M. (2017). El subsuelo de la ciudad de México (The Subsoil of Mexico City). Vol. III, Ciudad de México: Instituto de Ingeniería, UNAM.
[5] Auvinet G. & Reséndiz D. (2018). Confusiones surgidas a partir de los sismos de 2017 en la Ciudad de México. Geotecnia, Órgano oficial de la Sociedad Mexicana de Ingeniería Geotécnica, A.C., 246, 24-27.
[6] Biarez J. (1961). Remarques sur les propriétés mécaniques des corps pulvérulents. Cahiers du Group Francais d’Etudes de Rhéologie, 4(3).
[7] CDMX, Gobierno de la Ciudad de México (2017). Norma técnica complementaria para el proyecto arquitectónico. Gaceta Oficial de la Ciudad de México.
[8] Cundall P. & Strack O. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47-65.
[9] Jones R. (2009). Deformation theory of plasticity. United States of America: Bull Ridge Publishing.
[2] Auvinet G., Méndez E. & Juárez M. (2013a). Soil fracturing induced by land subsidence in Mexico City. En Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, International Society for Soil Mechanics and Geotechnical Engineering, Paris, Francia.
[3] Auvinet G., Méndez E. & Juárez M. (2013b). Evaluation of regional subsidence and soil fracturing in Mexico City Valley. En Proceedings of the Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina.
[4] Auvinet G., Méndez E. & Juárez M. (2017). El subsuelo de la ciudad de México (The Subsoil of Mexico City). Vol. III, Ciudad de México: Instituto de Ingeniería, UNAM.
[5] Auvinet G. & Reséndiz D. (2018). Confusiones surgidas a partir de los sismos de 2017 en la Ciudad de México. Geotecnia, Órgano oficial de la Sociedad Mexicana de Ingeniería Geotécnica, A.C., 246, 24-27.
[6] Biarez J. (1961). Remarques sur les propriétés mécaniques des corps pulvérulents. Cahiers du Group Francais d’Etudes de Rhéologie, 4(3).
[7] CDMX, Gobierno de la Ciudad de México (2017). Norma técnica complementaria para el proyecto arquitectónico. Gaceta Oficial de la Ciudad de México.
[8] Cundall P. & Strack O. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47-65.
[9] Jones R. (2009). Deformation theory of plasticity. United States of America: Bull Ridge Publishing.
Copyright © 2025 Gabriel Auvinet-Guichard, Jesús Sánchez-Guzmán, Alma Rosa Pineda-Contreras

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License