Hydraulic Analysis with CFD – Flow 3D Numerical Modeling of Local Erosion in Bridge Piles
Journal: Journal of Building Technology DOI: 10.32629/jbt.v7i1.3410
Abstract
Within the Centro de Investigaciones y Estudios en Recursos Hídricos (CIERHI), the experimental analysis was carried out in a physical model of turbulence phenomena, which causes erosion around bridge piers (Chiliquinga & Pinto, 2019). The data of the experimental model was used as a calibration base for the three-dimensional numerical modeling of erosion around bridge piers, using the FLOW-3D computational package. Once the model was calibrated, the conditions with which the physical model was made were improved, since in the experimental results, it was determined that a deeper sand bed was necessary to be able to determine the maximum erosion. In the numerical model, the optimal conditions were placed to obtain results without the physical limitations that exist in an experimental model, thus obtaining results of maximum local scour in pier bridge, and these results were compared with values calculated based on different empirical equations.
Keywords
erosion; piers; simulation; modelling; scour; FLOW-3D
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] Bravo, M., Osterkamp, P., & Lopes, L. (2004). Transporte de sedimentos en corrientes naturales. Terra Latinoamericana, 22(3), 377-386. https://www.redalyc.org/pdf/573/57322315.pdf
[2] Chiliquinga, J., & Pinto, C. (2019). Análisis experimental en modelo físico de fenómenos de turbulencia causantes de erosión alrededor de pilas de puentes utilizando acoustic doppler velocimeterADV [Tesis de pregrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20363
[3] Chow, V. (2004). Hidráulica de canales abiertos. Nomos S.A.
[4] Fernández Luque, R., & Van Beek, R. (1976). Erosion and transport of bed-load sediment. Journal of Hydraulic Research, 14(2), 127 - 144. https://doi.org/10.1080/00221687609499677
[5] Fernández, M. (2004). Estudio de la evolución temporal de la Erosión Local en. Barcelona [Tesina]: UPCommons. https://upcommons.upc.edu/handle/2099.1/3343
[6] FLOW- 3D. (s.f.). Flow 3D Hydro user manual. Obtenido de https:///C:/flow3d/HYDROv1.0u1/help/index.html
[7] Gallardo, K. (2019). Demostración experimental del efecto de los paneles sumergidos en la erosión local de pilas de puentes cuadradas. Quito, Pichincha, Ecuador [Tesis de pregrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20172?locale=de
[8] Hamad, K. (2015). Submerged Vanes Turbulence Experimental Analysis [Tesis doctoral, Universitat Politècnica de Catalunya]. TDX. http://hdl.handle.net/10803/377436
[9] Higgins, A., Restrepo, J., Otero, L., Ortiz, J., & Conde, M. (2017). Distribución vertical de sedimentos en suspensión en la zona de desembocadura. Latin american journal of aquatic research.,45(4), 724-736. http://dx.doi.org/10.3856/vol45-issue4-fulltext-9
[10] Jurado, L., & Oñate, V. (Julio de 2020). Análisis del transporte de sedimentos aguas abajo de paneles sumergidos aplican. Quito, Ecuador [Tesis de postgrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20172?locale=de
[11] Mastbergen, D., & Van Den Berg, J. (2003). Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4), 625 - 637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
[12] Meyer-Peter, E., y Müller, R. (1948). Formulas for Bed-Load Transport. Proceedings of the 2nd Meeting the International Association for Hydraulic Structures Research, Delft, 39-64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7
[13] Nielsen, P. (1992) Coastal Bottom Boundary Layers and Sediment Transport. World Scientific. https://doi.org/10.1142/1269
[14] Rijn, Van. (1984). Sediment transport, Part I: bed load transport. Journal of Hydraulic, 110(10). 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
[15] Rijn, Van. (1993). Principles of sediment transport in rivers, estuaries and coastal seas. Aqua, Amsterdam Publications.
[16] Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau. http://resolver.tudelft.nl/uuid:a66ea380-ffa3-449b-b59f-38a35b2c6658
[17] Soulsby, C. (1997). Bed load transport. In Dynamics of Marine Sand. Thomas Telford Publications.
[18] Weig, G, Brethour, J., Grunzner, M., y Burnham, J. (2014). The sediment Scour Model in Flow 3D. Flow Science.
[2] Chiliquinga, J., & Pinto, C. (2019). Análisis experimental en modelo físico de fenómenos de turbulencia causantes de erosión alrededor de pilas de puentes utilizando acoustic doppler velocimeterADV [Tesis de pregrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20363
[3] Chow, V. (2004). Hidráulica de canales abiertos. Nomos S.A.
[4] Fernández Luque, R., & Van Beek, R. (1976). Erosion and transport of bed-load sediment. Journal of Hydraulic Research, 14(2), 127 - 144. https://doi.org/10.1080/00221687609499677
[5] Fernández, M. (2004). Estudio de la evolución temporal de la Erosión Local en. Barcelona [Tesina]: UPCommons. https://upcommons.upc.edu/handle/2099.1/3343
[6] FLOW- 3D. (s.f.). Flow 3D Hydro user manual. Obtenido de https:///C:/flow3d/HYDROv1.0u1/help/index.html
[7] Gallardo, K. (2019). Demostración experimental del efecto de los paneles sumergidos en la erosión local de pilas de puentes cuadradas. Quito, Pichincha, Ecuador [Tesis de pregrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20172?locale=de
[8] Hamad, K. (2015). Submerged Vanes Turbulence Experimental Analysis [Tesis doctoral, Universitat Politècnica de Catalunya]. TDX. http://hdl.handle.net/10803/377436
[9] Higgins, A., Restrepo, J., Otero, L., Ortiz, J., & Conde, M. (2017). Distribución vertical de sedimentos en suspensión en la zona de desembocadura. Latin american journal of aquatic research.,45(4), 724-736. http://dx.doi.org/10.3856/vol45-issue4-fulltext-9
[10] Jurado, L., & Oñate, V. (Julio de 2020). Análisis del transporte de sedimentos aguas abajo de paneles sumergidos aplican. Quito, Ecuador [Tesis de postgrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20172?locale=de
[11] Mastbergen, D., & Van Den Berg, J. (2003). Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4), 625 - 637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
[12] Meyer-Peter, E., y Müller, R. (1948). Formulas for Bed-Load Transport. Proceedings of the 2nd Meeting the International Association for Hydraulic Structures Research, Delft, 39-64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7
[13] Nielsen, P. (1992) Coastal Bottom Boundary Layers and Sediment Transport. World Scientific. https://doi.org/10.1142/1269
[14] Rijn, Van. (1984). Sediment transport, Part I: bed load transport. Journal of Hydraulic, 110(10). 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
[15] Rijn, Van. (1993). Principles of sediment transport in rivers, estuaries and coastal seas. Aqua, Amsterdam Publications.
[16] Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau. http://resolver.tudelft.nl/uuid:a66ea380-ffa3-449b-b59f-38a35b2c6658
[17] Soulsby, C. (1997). Bed load transport. In Dynamics of Marine Sand. Thomas Telford Publications.
[18] Weig, G, Brethour, J., Grunzner, M., y Burnham, J. (2014). The sediment Scour Model in Flow 3D. Flow Science.
Copyright © 2025 Khaled Hamad, Cristina Torres

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License