Optimization Methodology for the Use of Plasterboard and Steel Profiles in a Housing Project

Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i2.2842

Guillermo Bustamante, Isidora Pino, Christian Molina

Department of Civil Engineering, Universidad Católica de la Santísima Concepción

Abstract

At present, the construction industry generates the most waste in the world, accounting for about 35% of solid waste, and Chile has a similar proportion. For every square meter of construction, 0.26 m3 of waste are generated, approximately during the construction phase. This study analyzed the San Andrés del Valle expansion building project of Aitue, a construction company located in Concepcion, Bio Region, Chile. We are seeking to develop a proposal to minimize material loss, particularly for the two most commonly used elements in building construction, such as cardboard plasterboard sheets and Metalcon profiles. In this way, the above materials can be optimized to reduce waste and achieve cleaner work. In addition, an economic analysis was conducted on the savings generated by on-site optimization of the studied materials.

Keywords

optimization; construction waste; plasterboard; Metalcon galvanized steel profiles

References

[1] Aleksanin, A. (2019). Development of construction waste management. XXII International Scientific Conference on Construction for the Formation of Living Environment FORM-2019, E3S Web of Conferences 97, 06040.
[2] Bravo, J., Valderrama, C. y Ossio, F. (2019). Cuantificación económica de los residuos de construcción de una edificación en altura: un caso de estudio. Información Tecnológica, 30(2), 85-94.
[3] Bravo J. (2018). Análisis de las principales pérdidas de materiales en obras de edificación en etapa de terminaciones. Memoria de título de Constructor Civil, Universidad Técnica Federico Santa María, Valparaíso, Chile.
[4] Chandrakanthi, M., Hettiaratchi, P., Prado, B. and Ruwanpura, J.Y. (2002). Optimization of the waste management for construction projects using simulation. IEEE Winter Simulation Conference, vol. 2, 1771-1777.
[5] CutMaster 2D (2015). Cutting optimization software for professional and home workshops. Pro v.1.5.3. Greensburg PA, USA.
[6] Ghaffar, S.H., Burman, M. and Braimah, N. (2020). Pathways to circular construction: an integrated management of construction and demolition waste for resource recovery. Journal of Cleaner Production 244, 118710.
[7] Guarda J. (2008). Estudio para minimizar las pérdidas de materiales en obras de edificación en extensión. Memoria de título de Ingeniero Civil, Universidad de Chile, Santiago, Chile.
[8] MMA (2020). Generación residuos de la construcción y demolición, Capítulo 2.6. Residuos, Capítulo 10. Informe del estado del medio ambiente. Ministerio del Medio Ambiente MMA, Santiago, Chile.
[9] MINVU (2018). Estándares de construcción sustentable para viviendas de Chile. Tomo IV: Materiales y Residuos. Ministerio de Vivienda y Urbanismo, Santiago, Chile.
[10] Pape, H. y Nazer, A. (2021). Determinantes de la innovación en empresas constructoras de la Región de Atacama, Chile. Obras y Proyectos, 29, 80-92.
[11] Patel, S. and Patel, C.G. (2016). Cost optimization of the project by construction waste management. International Research Journal of Engineering and Technology, 3(5), 734-740.
[12] SketchUp (2017). 3D design software. v.16.1.1450. Trimble Inc., Sunnyvale CA, USA.
[13] Véliz, K.D., Ramírez-Rodríguez, G. and Ossio, F. (2022). Willingness to pay for construction and demolition waste from buildings in Chile. Waste Management, 137, 222-230.
[14] Wang, J., Wu, H., Tam, V.W. and Zuo, J. (2019). Considering life-cycle environmental impacts and society's willingness for optimizing construction and demolition waste management fee: an empirical study of China. Journal of Cleaner Production, 206, 1004-1014.

Copyright © 2024 Guillermo Bustamante, Isidora Pino, Christian Molina

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License