Stress-strain Analysis of the Remediation Works Implemented to Stabilize the Mining Subsidence Under the La Inmaculada School, Zaruma-Ecuador

Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i2.2628

Danny Santiago Burbano Morillo1, Andrés Mauricio Rivadeneira Gallardo2, Aldrin Alfredo Cerón Uquillas2, Tania Elizabeth García Fonseca3

1. Master in Geological Engineering (Madrid-Spain, UCM), Professor, Universidad Central del Ecuador
2. Mining Engineer (Quito-Ecuador, UCE) Private Investigator
3. Master's Degree in Advanced Paleontology (Madrid-Spain, UCM), Professor, Universidad Central del Ecuador

Abstract

This work establishes 4 stress-deformational scenarios that show the instability process and remediation works, in relation to the subsidence event and collapse of the land where the school La Inmaculada (Zaruma-Ecuador) was established. Longitudinal profiles were used in the direction of the exploitation of the "Tres Reyes" vein where the geological-structural model that serves as a basis for the calculation of the deformations in the mining galleries around their plastic behavior is shown. For the modeling, it was necessary to determine, the dead load of the infrastructure, pseudo-static loads, positioning of the water table, physical-mechanical-elastic parameters of the rock matrix and discontinuities that together define the behavior of stress and deformation by means of the numerical technique of Finite Element Method (FEM). Design an optimized mortar with a dosage of 1 cement (C): 2 tailings (R) and a water (A)/cement (C) ratio of 0.49 to obtain a strength of 18 MPa after 14 days of curing. Finally, it is proved that the application of the backfill with tailings mortar inside the galleries near the collapse zone, substantially decreases the deformation of the rock substrate from 1.9 m (Scenario 2: Empty cone) to 0.05 m (Scenario 4: Backfill with tailings mortar).

Keywords

stress; strain; subsidence; fill; remediation; collapse; mortar; Zaruma

References

[1] ACI 318 (2019). Building code requirements for structural concrete. American Concrete Institute ACI. Washington DC, USA.
[2] Carrillo, J. and Alcocer, S.M. (2013). Shear strength of reinforced concrete walls for seismic design of low-rise housing. ACI Structural Journal, 110(3), 415-426.
[3] Chopra, A. (2014). Dinámica de estructuras. Pearson Educación, México.
[4] Clough, R.W., Malhas, F. and Oliva, M.G. (1989). Seismic behavior of large panel precast concrete walls: analysis and experiment. PCI Journal, 34(2), 42-66.
[5] CSI (2018). ETABS v18. Computers & Structures, Inc. CSI. Structural and earthquake engineering software. USA.
[6] DS61 (2011). Decreto Supremo N°61. Reglamento que fija el diseño sísmico de edificios. Ministerio de Vivienda y Urbanismo, Santiago, Chile.
[7] FEMA 310 (1998). Handbook for the seismic evaluation of buildings. Federal Emergency Management Agency FEMA. Washington DC, USA.
[8] FEMA P-154 (2015). Rapid visual screening of buildings for potential seismic hazards: A Handbook. Federal Emergency Management Agency FEMA. Washington DC, USA.
[9] FEMA 273 (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency FEMA, Washington DC, USA.
[10] Kurama, Y.C., Sritharan, S., Fleischman, R.B., Restrepo, J.I., Henry, R.S., Cleland, N.M., Ghosh, S.K. and Bonelli, P. (2018). Seismic-resistant precast concrete structures: state of the art. Journal of Structural Engineering, 144(4), p.03118001.
[11] Lewicki, B. (1968). Edificios de viviendas prefabricadas con elementos de grandes dimensiones. Arkady, Polonia.
[12] López, C. y Music, J. (2016). Análisis del período y desplazamiento de edificios de hormigón armado considerando distintos grados de rigidez en sus elementos resistentes. Obras y Proyectos, 19, 33-47.
[13] Marcus, J. y Thiers, R. (2015). Control del daño sísmico estructural en pórticos prefabricados de hormigón armado a través de uniones híbridas autocentrantes. Obras y Proyectos, 18, 46-55.
[14] NC 283 (2003). Densidad de materiales naturales, artificiales y de elementos de construcción como carga de diseño. Comité Estatal de Normalización, La Habana, Cuba.
[15] NC 284 (2003). Edificaciones. Cargas de uso. Comité Estatal de Normalización, La Habana, Cuba.
[16] NC 46 (2017). Construcciones sismo resistentes. Requisitos básicos para el diseño y construcción. Comité Estatal de Normalización, La Habana, Cuba.
[17] Oliva, R. (2001). Determinación experimental del periodo fundamental de vibración de estructuras para la evaluación de la vulnerabilidad en Cuba. Grupo de Ingeniería Sísmica. Centro Nacional de Investigaciones Sismológicas. Cuba.
[18] Socarrás, Y.C. y Álvarez, E. (2019). Factores causantes de daños potenciales en el Gran Panel Soviético. VI Jornada Internacional de Ingeniería Civil. Holguín, Cuba.
[19] Socarrás-Cordoví, Y.C., González-Diaz, l., Alvarez-Deulofeu, E., González -Fernández, M.M., Roca-Fernández, E. and Torres-Shoembert, R. (2020a). Valuation of the durability of the concrete used in the precast Great Soviet Panel System. Revista Facultad de Ingeniería, 29(54), e10486.
[20] Socarrás, Y.C., González, l., Alvarez, E., González, M.M. y Roca, E. (2020b). Evaluación de la calidad del hormigón en edificaciones construidas con el sistema prefabricado gran panel soviético. Tecnología Química, 40(2), 264-277.
[21] Socarrás, Y.C., Alvarez, E. y Moreno, E. (2020c). Repercusiones de las contravenciones estructurales e incremento de peso en el Sistema Gran Panel Soviético en Santiago de Cuba. Revista de Obras Públicas, 3623, 74-82.
[22] Socarrás, Y.C. (2020). Procedimiento para la evaluación de daños sísmicos potenciales en el sistema prefabricado Gran Panel Soviético. Tesis doctoral, Universidad de Oriente, Cuba.
[23] Socarrás, Y., Álvarez, E. and Lora, F. (2021a). Forecasts on the seismic behavior of buildings constructed with the Great Soviet Panel. DYNA 88(216), 145-151.
[24] Socarrás, Y., Álvarez, E. and Lora, F. (2021b). Changes in the fundamental periods of buildings constructed with the Great Soviet Panel. ESTOA, 10(19), 220-235.

Copyright © 2024 Danny Santiago Burbano Morillo, Andrés Mauricio Rivadeneira Gallardo, Aldrin Alfredo Cerón Uquillas, Tania Elizabeth García Fonseca

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License