Seismic Vulnerability of the Prefabricated Soviet Great Panel System in Deteriorated and Transformed Buildings
Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i2.2596
Abstract
The prefabricated Soviet great panel system has shown good earthquake resistance performance in several countries where it has been implemented. However, there are uncertainties with the buildings built in the city of Santiago de Cuba, the area of greatest seismic danger in the country. Due to the fact that the design codes of the emergence time of the prefabricated system have already been repealed, together with the pathological damages and structural transformations carried out by the inhabitants. Therefore, a structural verification is required, through the checking of global control parameters, the eccentricities of the centers of mass with respect to the centers of stiffness, displacements and drifts of the floors, torsional stiffness, the P-Δ effects, among other aspects. Building U-142-143 is chosen for this analysis, mainly because it has critical operating conditions. It is concluded that, although the prefabricated system does not comply with all the current requirements of earthquake resistant design and present significant irregularities in plan and elevation, the building analyzed according to the formulations in the codes used, can retain rigidity in the face of seismic action. A comparison between the building according to the original project and the current variant corroborates that the greatest changes are observed in the fundamental periods. Consequently, there are variations in drift, displacement and stiffness.
Keywords
structural verification; precast system; irregularities; stiffness; displacement; drifts; eccentricities
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1]ACI 318 (2019). Building code requirements for structural concrete. American Concrete Institute ACI. Washington DC, USA.
[2]Carrillo, J. and Alcocer, S.M. (2013). Shear strength of reinforced concrete walls for seismic design of low-rise housing. ACI Structural Journal, 110(3), 415-426.
[3]Chopra, A. (2014). Dinámica de estructuras. Pearson Educación, México.
[4]Clough, R.W., Malhas, F. and Oliva, M.G. (1989). Seismic behavior of large panel precast concrete walls: analysis and experiment. PCI Journal, 34(2), 42-66.
[5]CSI (2018). ETABS v18. Computers & Structures, Inc. CSI. Structural and earthquake engineering software. USA.
[6]DS61 (2011). Decreto Supremo N°61. Reglamento que fija el diseño sísmico de edificios. Ministerio de Vivienda y Urbanismo, Santiago, Chile.
[7]FEMA 310 (1998). Handbook for the seismic evaluation of buildings. Federal Emergency Management Agency FEMA. Washington DC, USA.
[8]FEMA P-154 (2015). Rapid visual screening of buildings for potential seismic hazards: A Handbook. Federal Emergency Management Agency FEMA. Washington DC, USA.
[9]FEMA 273 (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency FEMA, Washington DC, USA.
[10]Kurama, Y.C., Sritharan, S., Fleischman, R.B., Restrepo, J.I., Henry, R.S., Cleland, N.M., Ghosh, S.K. and Bonelli, P. (2018). Seismic-resistant precast concrete structures: state of the art. Journal of Structural Engineering, 144(4), p.03118001.
[11]Lewicki, B. (1968). Edificios de viviendas prefabricadas con elementos de grandes dimensiones. Arkady, Polonia.
[12]López, C. y Music, J. (2016). Análisis del período y desplazamiento de edificios de hormigón armado considerando distintos grados de rigidez en sus elementos resistentes. Obras y Proyectos, 19, 33-47.
[13]Marcus, J. y Thiers, R. (2015). Control del daño sísmico estructural en pórticos prefabricados de hormigón armado a través de uniones híbridas autocentrantes. Obras y Proyectos, 18, 46-55.
[14]NC 283 (2003). Densidad de materiales naturales, artificiales y de elementos de construcción como carga de diseño. Comité Estatal de Normalización, La Habana, Cuba.
[15]NC 284 (2003). Edificaciones. Cargas de uso. Comité Estatal de Normalización, La Habana, Cuba.
[16]NC 46 (2017). Construcciones sismo resistentes. Requisitos básicos para el diseño y construcción. Comité Estatal de Normalización, La Habana, Cuba.
[17]Oliva, R. (2001). Determinación experimental del periodo fundamental de vibración de estructuras para la evaluación de la vulnerabilidad en Cuba. Grupo de Ingeniería Sísmica. Centro Nacional de Investigaciones Sismológicas. Cuba.
[18]Socarrás, Y.C. y Álvarez, E. (2019). Factores causantes de daños potenciales en el Gran Panel Soviético. VI Jornada Internacional de Ingeniería Civil. Holguín, Cuba.
[19]Socarrás-Cordoví, Y.C., González-Diaz, l., Alvarez-Deulofeu, E., González -Fernández, M.M., Roca-Fernández, E. and Torres-Shoembert, R. (2020a). Valuation of the durability of the concrete used in the precast Great Soviet Panel System. Revista Facultad de Ingeniería, 29(54), e10486.
[20]Socarrás, Y.C., González, l., Alvarez, E., González, M.M. y Roca, E. (2020b). Evaluación de la calidad del hormigón en edificaciones construidas con el sistema prefabricado gran panel soviético. Tecnología Química, 40(2), 264-277.
[21]Socarrás, Y.C., Alvarez, E. y Moreno, E. (2020c). Repercusiones de las contravenciones estructurales e incremento de peso en el Sistema Gran Panel Soviético en Santiago de Cuba. Revista de Obras Públicas, 3623, 74-82.
[22]Socarrás, Y.C. (2020). Procedimiento para la evaluación de daños sísmicos potenciales en el sistema prefabricado Gran Panel Soviético. Tesis doctoral, Universidad de Oriente, Cuba.
[23]Socarrás, Y., Álvarez, E. and Lora, F. (2021a). Forecasts on the seismic behavior of buildings constructed with the Great Soviet Panel. DYNA 88(216), 145-151.
[24]Socarrás, Y., Álvarez, E. and Lora, F. (2021b). Changes in the fundamental periods of buildings constructed with the Great Soviet Panel. ESTOA, 10(19), 220-235.
[2]Carrillo, J. and Alcocer, S.M. (2013). Shear strength of reinforced concrete walls for seismic design of low-rise housing. ACI Structural Journal, 110(3), 415-426.
[3]Chopra, A. (2014). Dinámica de estructuras. Pearson Educación, México.
[4]Clough, R.W., Malhas, F. and Oliva, M.G. (1989). Seismic behavior of large panel precast concrete walls: analysis and experiment. PCI Journal, 34(2), 42-66.
[5]CSI (2018). ETABS v18. Computers & Structures, Inc. CSI. Structural and earthquake engineering software. USA.
[6]DS61 (2011). Decreto Supremo N°61. Reglamento que fija el diseño sísmico de edificios. Ministerio de Vivienda y Urbanismo, Santiago, Chile.
[7]FEMA 310 (1998). Handbook for the seismic evaluation of buildings. Federal Emergency Management Agency FEMA. Washington DC, USA.
[8]FEMA P-154 (2015). Rapid visual screening of buildings for potential seismic hazards: A Handbook. Federal Emergency Management Agency FEMA. Washington DC, USA.
[9]FEMA 273 (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency FEMA, Washington DC, USA.
[10]Kurama, Y.C., Sritharan, S., Fleischman, R.B., Restrepo, J.I., Henry, R.S., Cleland, N.M., Ghosh, S.K. and Bonelli, P. (2018). Seismic-resistant precast concrete structures: state of the art. Journal of Structural Engineering, 144(4), p.03118001.
[11]Lewicki, B. (1968). Edificios de viviendas prefabricadas con elementos de grandes dimensiones. Arkady, Polonia.
[12]López, C. y Music, J. (2016). Análisis del período y desplazamiento de edificios de hormigón armado considerando distintos grados de rigidez en sus elementos resistentes. Obras y Proyectos, 19, 33-47.
[13]Marcus, J. y Thiers, R. (2015). Control del daño sísmico estructural en pórticos prefabricados de hormigón armado a través de uniones híbridas autocentrantes. Obras y Proyectos, 18, 46-55.
[14]NC 283 (2003). Densidad de materiales naturales, artificiales y de elementos de construcción como carga de diseño. Comité Estatal de Normalización, La Habana, Cuba.
[15]NC 284 (2003). Edificaciones. Cargas de uso. Comité Estatal de Normalización, La Habana, Cuba.
[16]NC 46 (2017). Construcciones sismo resistentes. Requisitos básicos para el diseño y construcción. Comité Estatal de Normalización, La Habana, Cuba.
[17]Oliva, R. (2001). Determinación experimental del periodo fundamental de vibración de estructuras para la evaluación de la vulnerabilidad en Cuba. Grupo de Ingeniería Sísmica. Centro Nacional de Investigaciones Sismológicas. Cuba.
[18]Socarrás, Y.C. y Álvarez, E. (2019). Factores causantes de daños potenciales en el Gran Panel Soviético. VI Jornada Internacional de Ingeniería Civil. Holguín, Cuba.
[19]Socarrás-Cordoví, Y.C., González-Diaz, l., Alvarez-Deulofeu, E., González -Fernández, M.M., Roca-Fernández, E. and Torres-Shoembert, R. (2020a). Valuation of the durability of the concrete used in the precast Great Soviet Panel System. Revista Facultad de Ingeniería, 29(54), e10486.
[20]Socarrás, Y.C., González, l., Alvarez, E., González, M.M. y Roca, E. (2020b). Evaluación de la calidad del hormigón en edificaciones construidas con el sistema prefabricado gran panel soviético. Tecnología Química, 40(2), 264-277.
[21]Socarrás, Y.C., Alvarez, E. y Moreno, E. (2020c). Repercusiones de las contravenciones estructurales e incremento de peso en el Sistema Gran Panel Soviético en Santiago de Cuba. Revista de Obras Públicas, 3623, 74-82.
[22]Socarrás, Y.C. (2020). Procedimiento para la evaluación de daños sísmicos potenciales en el sistema prefabricado Gran Panel Soviético. Tesis doctoral, Universidad de Oriente, Cuba.
[23]Socarrás, Y., Álvarez, E. and Lora, F. (2021a). Forecasts on the seismic behavior of buildings constructed with the Great Soviet Panel. DYNA 88(216), 145-151.
[24]Socarrás, Y., Álvarez, E. and Lora, F. (2021b). Changes in the fundamental periods of buildings constructed with the Great Soviet Panel. ESTOA, 10(19), 220-235.
Copyright © 2024 Yamila C. Socarrás, Eduardo R. Álvarez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License