Assessment of a Force Method for the Resilient Seismic Design of Special Moment-Resisting Steel Frames with Hysteretic Energy Dissipation Devices

Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i2.2584

Héctor Hernández Ramírez1, Arturo Tena Colunga2

1. Postgraduate in Structural Engineering, Universidad Autónoma Metropolitana Azcapotzalco
2. Materials Department, Universidad Autónoma Metropolitana Azcapotzalco

Abstract

In this paper, the authors present the results of nonlinear dynamic analyses of twelve building models designed according to a methodology based upon the force method, capacity design principles and the concept of structural fuses to achieve resilient seismic designs for special moment-resisting steel frames with hysteretic energy dissipation devices mounted on chevron steel bracing. It is demonstrated that the resilient design mechanism previously checked with pushover analyses is also attained for most studied models with nonlinear dynamic analyses using an acceleration record which is compatible with the elastic design spectrum. Also, it is corroborated that the planned second line of inelastic defense is activated if the seismic action surpasses the considered design spectrum. Based upon the obtained results, it is confirmed that it is possible to perform a resilient seismic design for the studied system under the proposed methodology, even for tall and slender buildings. Therefore, the proposed initial stiffness ratio parameters and the global design parameters previously proposed by the authors to use in a code-oriented force method can be used with confidence for the resilient seismic design of this structural system.

Keywords

resilient seismic design; hysteretic energy dissipation devices; structural fuses; ductile steel moment frames

References

[1] Aguiar, R, L García, E Menéndez, M Zevallos y J Palacios (2016a), "Análisis y reforzamiento de una estructura afectada por el terremoto del 16 de abril de 2016", Revista Ingeniosos, Vol. 1, Art. 1, pp. 1-16, marzo-septiembre.
[2] Aguiar, R, M Rodríguez y D Mora (2016b), "Análisis sísmico de estructuras con disipadores de energía ADAS o TADAS", Monografía CIMNE IS-75, Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona, España, ISBN: 978-84-945077-5-5.
[3] Benedetti, A, L Landi y D G Merenda (2014), "Displacement-based design of an energy dissipating system for seismic upgrading of existing masonry structures", Journal of Earthquake Engineering, Vol. 18, No. 4, pp. 477-501, DOI: 10.1080/13632469.2014.897274.
[4] Chen, Z Y, H Ge, A Kasai y T Usami (2007), "Simplified seismic design approach for steel portal frame piers with hysteretic dampers", Earthquake Engineering and Structural Dynamics, Vol. 36, No. 4, pp. 541-562. DOI: 10.1002/eqe.643
[5] Del Valle, E (1988), "Amortiguamiento adicional para reducir efectos sísmicos", Revista de Ingeniería Sísmica, No. 32, pp. 49-76.
[6] Foti, D, L M. Bozzo y F López-Almansa (1998), "Numerical efficiency assessment of energy dissipators for seismic protection of buildings", Earthquake Engineering and Structural Dynamics, Vol. 27, pp. 543-556. DOI: 10.1002/(SICI)1096-9845(199806)27:6<543::AID-EQE733>3.0.CO;2-9
[7] Hernández, H (2015), "Propuesta de diseño sísmico para marcos de acero con disipadores de energía histeréticos", Tesis de Maestría, Posgrado en Ingeniería Estructural, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana Azcapotzalco, julio.
[8] Nangullasmú, H J y A Tena (2016), "Requisitos mínimos de detallado dúctil en marcos de concreto reforzado protegidos con disipadores histeréticos de energía", Revista de Ingeniería Sísmica, No. 95, pp. 1-32, julio-diciembre, DOI: 10.18867/ris.95.381.
[9] NTCS-04 (2004), "Normas Técnicas Complementarias para Diseño por Sismo", Gaceta Oficial del Distrito Federal, Tomo II, No. 103-BIS, octubre.
[10] Ramírez, O M, M C Constantinou, C A Kircher, A S Whittaker, M W Johnson, J D Gómez y C Z Chryzostomou (2001), "Development and evaluation of simplified procedures for analysis and design of buildings with passive energy dissipation systems", Technical Report MCEER-00-0010, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo.
[11] Rosenblueth, E, M Ordaz, F J Sánchez-Sesma y S K Singh (1989), "The Mexico earthquake of September 19, 1985 - Design spectra for Mexico´s Federal District", Earthquake Spectra, Vol. 5, No. 1, pp. 273-291. DOI: 10.1193/1.1585523
[12] Scholl, R E (1993), "Fundamental design issues for supplemental damping applications", Earthquake Spectra, Vol. 9, No.3, pp. 627-636. DOI: 10.1193/1.1585732
[13] Symans, M D, F A Charney, A S Whittaker, M C Constantinou, C A Kircher, M W Johnson y R J McNamara (2008), "Energy dissipation systems for seismic applications: current practice and recent developments", ASCE Journal of Structural Engineering, Vol. 134, No. 1, pp. 3-21. DOI: 10.1061/(ASCE)0733-9445(2008)134:1(3)
[14] Tena, A (1997), "Espectros inelásticos de demandas de ductilidad para la evaluación de estructuras existentes ante sismos", Memorias, XI Congreso Nacional de Ingeniería Sísmica, Veracruz, Vol. I, pp. 671-682, noviembre.
[15] Tena, A (1998a), "Modelado analítico de edificios con disipadores de energía, aplicaciones en proyectos de reestructuración", Memorias, V Simposio Nacional de Ingeniería Sísmica: Disipadores de energía para controlar la respuesta sísmica de edificios, Toluca, Estado de México, pp. 85-120, septiembre.
[16] Tena, A (1998b), "Evaluación sísmica simplificada de estructuras existentes", Revista de Ingeniería Sísmica, No. 59, pp. 29-62, julio-diciembre, DOI: 10.18867/ris.59.251.
[17] Tena, A (2000), "Modelado analítico de edificios con disipadores de energía", Revista de Ingeniería Sísmica, No. 62, pp. 29-62, DOI: 10.18867/ris.62.253.
[18] Tena, A (2010), "A 25 años del sismo de septiembre de 1985: Breves reflexiones sobre los espectros de diseño sísmico", Memorias, XI Simposio Nacional de Ingeniería Sísmica, a 25 años del sismo de 1985: Aprendizaje, Conciencia y Prevención, México, DF, CDROM, pp. 1-9, septiembre.
[19] Tena, A y H J Nangullasmú (2013), "Diseño sísmico de marcos no dúctiles de concreto reforzado con disipadores de energía histeréticos. Definición de parámetros de diseño", Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, Vol. 13, No. 2, pp. 275-299.
[20] Tena, A, H J Nangullasmú, H Hernández y A Gama (2016), "Diseño sísmico conforme a reglamento de edificios estructurados con base en marcos contraventeados con disipadores de energía histeréticos", Memorias, XIV Simposio Nacional de Ingeniería Sísmica, León, Guanajuato, CDROM, pp. 1-57, junio-julio.
[21] Tena, A y H Hernández (2016), "Definición de parámetros globales de diseño sísmico de marcos dúctiles de acero con disipadores de energía histeréticos", Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, Vol. 16, No. 1, pp. 19-47.
[22] Tena, A y H Hernández (2017), "Diseño sísmico resiliente de marcos dúctiles de acero con fusibles estructurales", Revista Internacional de Ingeniería de Estructuras, Vol. 22, No. 4, pp. 421-457.
[23] Tena, A y A Gama (2017), "Determinación de parámetros de diseño sísmico para marcos dúctiles de concreto reforzado con disipadores de energía histeréticos", Revista Sul-americana de Engenharia Estrutural, Vol. 14, No. 1, pp. 36-58, DOI: 10535/rsaee.v14i1.6496.
[24] Tena-Colunga, A y D Pérez-Moreno (1994), "Seismic upgrading of a nine-story building at Mexico City's lake-bed zone using U-Shaped energy dissipation devices", Memorias, 9th International Seminar on Earthquake Prognostics, San José, Costa Rica, septiembre, DOI:10.13140/2.1.1991.9684.
[25] Tena-Colunga, A, E Del Valle y D Pérez-Moreno (1996), "Issues on the seismic retrofit of a building near resonant response and structural pounding", Earthquake Spectra, Vol. 12, No. 3, pp. 567-597, DOI: 10.1193/1.1585897.
[26] Tena-Colunga, A y A Vergara (1997), "Comparative study on the seismic retrofit of a mid-rise steel building: steel bracing vs energy dissipation", Earthquake Engineering & Structural Dynamics, Vol. 26, No. 6, pp. 637-645, DOI: 10.1002/(SICI)1096-9845(199706)26:6<637::AID-EQE666>3.0.CO;2-R.
[27] Tena-Colunga, A (2001), "Displacement ductility demand spectra for the seismic evaluation of structures", Engineering Structures, Vol. 23, No. 10, pp. 1319-1330, DOI: 10.1016/S0141-0296(01)00025-6.
[28] Tena-Colunga, A (2007), "State of the art and state of the practice for energy dissipation and seismic isolation of structures in Mexico", Memorias, 10th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Estambul, Turquía, CD-ROM, mayo.
[29] Tena-Colunga, A y H J Nangullasmú-Hernández (2015), "Assessment of seismic design parameters of moment resisting RC braced frames with metallic fuses", Engineering Structures, Vol. 95, pp. 138-153, DOI: 10.1016/j.engstruct.2015.03.062.
[30] Tena-Colunga, A y H Hernández-Ramírez (2017), "Code-oriented global design parameters for moment-resisting steel frames with metallic structural fuses", Frontiers in Built Environment, Vol. 3, Article 19, DOI: 10.3389/fbuil.2017.00019.
[31] Vargas, R y M Bruneau (2006), "Analytical investigation of the structural fuse concept", Technical Report MCEER-06-0004, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, March.
[32] Vargas, R y M Bruneau (2009), "Analytical response and design of buildings with metallic structural fuses. I", ASCE Journal of Structural Engineering, Vol. 135, No. 4, pp. 386-393. DOI: 10.1061/(ASCE)0733-9445(2009)135:4(386)
[33] Wu, J y R E Hanson (1987), "Inelastic response of structures with high damping subjected to earthquakes", Report UMCE 87-9, Department of Civil Engineering, The University of Michigan, noviembre.

Copyright © 2024 Héctor Hernández Ramírez, Arturo Tena Colunga

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License