Barriers to Introduce Mass Timber in Construction in Ecuador - Exploratory Study
Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i2.2422
Abstract
In recent years, there has been a great interest in the use of mass timber in the construction industry. Thanks to configurations such as laminated timber (GLT and CLT), it has been possible to build high-rise buildings with its entire structure (beams, columns, slabs, and walls) made of wood. As technology improves, the gap between the use of reinforced concrete, steel, and wood will be reduced, and within a few years, wooden buildings may be as common as their concrete and steel counterparts. In Ecuador, the use of wood in construction is quite limited, with its most common use being with guadua cane (guadua angustifolia) and hardwoods for two-story houses. Mass timber could change this perception and be introduced as an alternative to concrete and steel. As its implementation is relatively new in the world, there is an opportunity to develop and exploit the potential of a new industry in the country. However, despite the potential of this material, its introduction may not have the expected impact, and this can occur due to a wide range of factors. This study developed a questionnaire using existing literature on mass timber in relation to: raw material production, manufacturing process, construction process, maintenance, cultural context, and environmental impact. With this, 10 interviews were conducted with professionals related to the construction industry. The responses were transcribed, analyzed, and coded to identify the perceived barriers for the introduction of this construction system in Ecuador. Finally, the article proposes ways to deepen academic research as well as the professional use of this material.
Keywords
sustainable construction, CLT (Cross Laminated Timber), GLT (Glued Laminated Timber)
Full Text
PDF - Viewed/Downloaded: 2 TimesReferences
[1] Vera, J. 2019. La contaminación atmosférica por las actividades de la industria de la construcción en Colombia. Virtual Pro, 213: 28. https://www.virtualpro.co/biblioteca/la-contaminacion-atmosferica-por-las-actividades-de-la-industria-de-la-construccion-en-colombia
[2] TEDx Talks. 2019. Timber Towers of Tomorrow|Michael Ramage|TEDx Cambridge University [video]. YouTube. https://www.youtube.com/watch?v=p8PGGmTMjWQ
[3] Xu, H. et al. 2022. Large-scale compartment fires to develop a self-extinction design framework for mass timber-Part 1: Literature review and methodology. Fire Safety Journal, 128: 103523. doi: https://doi.org/10.1016/j.firesaf.2022.103523
[4] Guerra, M. y Abebe, Y. 2019. Pairwise elicitation for a decision support framework to develop a flood risk response plan. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 5(1): 011004. doi: https://doi.org/10.1115/1.4040661
[5] Dieste, A. etal. 2018. Forest-Based Bioeconomy Areas. Universidad de la República Uruguay.
[6] Naciones Unidas. 2018. La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para America Latina y el Caribe. Biblioteca Digital AECID. https://bibliotecadigital.aecid.es/bibliodig/es/consulta/registro.do?control=ES-MAAEC20190011211
[7] Guerra, M. A. y Shealy, T. 2018. Teaching user-centered design for more sustainable infrastructure through role-play and experiential learning. Journal of Professional Issues in Engineering Education and Practice, 144(4). doi: https://doi.org/10.1061/(ASCE)EI.1943-5541.0000385
[8] The Ultimate Renewable. 2010. Andrew Waugh on Stadthaus.mp4 [video]. YouTube. https://www.youtube.com/watch?v=EsX1YO91Do8
[9] Foster, R. M. y Ramage, M. H. 2017. Briefing: super tall timber – Oakwood Tower. Proceedings of the Institution of Civil Engineers - Construction Materials, 170(3): 118-122. doi: https://doi.org/10.1680/jcoma.16.00034
[10] Wiegand, E. y Ramage, M. 2021. The impact of policy instruments on the first generation of tall wood buildings. Building Research & Information, 50(3): 1-21. doi: https://doi.org/10.1080/09613218.2021.1905501
[11] Burry, J. y Sabin, J. 2020. Introduction: Fabricate 2020: Making Resilient Architecture. En B. Sheil, y M. Skavara (Eds.), Fabricate (pp.8-18). UCL Press. doi: https://doi.org/10.2307/j.ctv13xpsvw.1
[12] Ramage, M., Foster, R., Smith, S., Flanagan, K. y Bakker, R. 2017. Super tall timber: design research for the next generation of natural structure. The Journal of Architecture, 22(1), 104-122. doi: https://doi.org/10.1080/13602365.2016.1276094
[13] Ugalde, D., Almazán, J. L., Santa María, H. y Guindos, P. 2019. Seismic protection technologies for timber structures: a review. Eur. J. Wood Prod., 77(2): 173–194. doi: https://doi.org/10.1007/s00107-019-01389-9
[14] Rubalcava, A. 2023, mayo 11. Engineers Shake Tallest Full-scale Building Ever Constructed on UC San Diego Earthquake Simulator. UC San Diego. https://today.ucsd.edu/story/engineers-shake-tallest-full-scale-building-ever-constructed-on-uc-san-diego-earthquake-simulator
[15] Blanchet, P. y Breton, C. 2020. Wood productions and renewable materials: the future is now. Forests, 11(6): 657. doi: https://doi.org/10.3390/f11060657
[16] APA. 2019. Engineered Wood Construction Guide. The Engineered Wood Association.
[17] Fraile, E., Ferreiro, J., Martínez de Pison, F. J. y Pernia-Espinoza, A. V. 2019. Effects of design and construction on the carbon footprint of reinforced concrete columns in residential buildings. MATERIALES dE CONSTRUCCIÓN, 69(335): 193. doi: https://doi.org/10.3989/mc.2019.09918
[18] Ravenscroft, T. 2017. What is Cross Laminated Timber (CLT)? The B1M. https://www.theb1m.com/video/what-is-cross-laminated-timber-clt
[19] C. Müller. 2000. Otto Hetzer Begründer des Holzleimbaus. Studiengemeinschaft Holzleimbau.
[20] Valldeby, D. 2020. A global solution for a locally active industry. Wood Magazine, 2: 17. https://www.swedishwood.com/publications/wood-magazine/2020-2/gerhard-schickhofer/
[21] Hermoso, E., Luengo, E. y Cabrero, J. C. 2017. Metodologías para la evaluación de calidad de encolado de la madera contralaminada (CLT). II Congreso Latinoamericano de Estructuras de Madera + II Congreso Ibero-Latinoamericano de la Madera en la Construcción. Buenos Aires, Argentina. https://clem-cimad2017.unnoba.edu.ar/papers/T4-07.pdf
[22] Chen, C., Pierobon, F. y Ganguly, I. 2019. Life cycle assessment (LCA) of cross-laminated timber (CLT) produced in western washington: the role of logistics and wood species mix. Sustainability, 11(5): 1278. doi: https://doi.org/10.3390/su11051278
[23] Coombs, S. 2018. The development of the building envelope using Welsh-grown timber: a study through prototyping. The Journal of Architecture, 23(1): 78–114. doi: https://doi.org/10.1080/13602365.2018.1424394
[24] Ministerio de Agricultura, Ganadería, Acuacultura y Pesca. 2016. Programa de Incentivos para Reforestación con Fines Comerciales. Fliphtml5. https://fliphtml5.com/wtae/lgui/basic
[25] Wang, J. Y. et al. 2018. Durability of mass timber structures: a review of the biological risks. WFS, 50: 110-127. doi: https://doi.org/10.22382/wfs-2018-045
[26] Llana, D. F., Arriaga, F., Esteban, M. y Íñiguez-González, G. 2019. Comparison between wet and dry timber visual strength grading according to the Spanish (UNE 56544) and German (DIN 4074-1) standards. Materiales de Construcción, 69(336): 205. doi: https://doi.org/10.3989/mc.2019.03319
[27] S utton, A., Black, D. y Walker, P. 2001. An introduction to low-impact building materials. Introduction Paper, 15(11): 6. https://www.thenbs.com/PublicationIndex/documents/details?DocId=298934
[28] Herzog, T., Natterer, J., Schweitzer, R., Volz, M. y Winter, W. 2004. Timber Construction Manual. Birkhauser. doi: https://doi.org/10.11129/detail.9783034614634
[29] Zelinka, S.L., Pei, S., Bechle, N.J., Sullivan, K.F., Ottum, N., Rammer, D.R., & Hasburgh, L.E. 2018. Performance of wood adhesives for cross laminated timber under elevated temperature. CTE 2018-World Conference on Timber Engineering. Seoul, Republic of Korea. https://www.fpl.fs.usda.gov/documnts/pdf2018/fpl_2018_zelinka004.pdf
[30] Čolić, A. 2021. Study of the char fall-off phenomenon in cross-laminated timber under fire conditions. [Master's thesis, The University of Edinburgh]. Research Gate. doi: https://doi.org/10.13140/RG.2.2.10704.84480
[31] Conde-García, M., Tenorio-Ríos, J. A. y Fernández-Golfín, J. 2021. Experimental evaluation of the effect of different design conditions on the risk of decay in solid wood exposed to outdoor climate. Materiales de Construcción, 71(342): e247. doi: https://doi.org/10.3989/mc.2021.12220
[32] B1M. 2017. Top 5: The World's Tallest Timber Buildings. TheB1M. https://www.theb1m.com/video/top-5-the-world-s-tallest-timber-buildings
[33] APA. 2014. APA-4 Best Practices for Glulam Installation. The Engineered Wood Association, 25: 620-7400. https://www.anthonyforest.com/assets/pdf/apa/glulam/4_Best_Practices_for_Glulam_Installation.pdf
[34] APA. 2021. Selección y Especificación de Madera Contralaminada (CLT). The Engineered Wood Association.
[35] Delgado, A., Pereira, C., De Brito, J. y Silvestre, J. D. 2018. Defect characterization, diagnosis and repair of wood flooring based on a field survey. Materiales de Construcción, 68(329): 149. doi: https://doi.org/10.3989/mc.2018.01817
[36] Hildebrandt, J., Hagemann, N. y Thrän, D. 2017. The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society, 34: 405-418. doi: https://doi.org/10.1016/j.scs.2017.06.013
[37] Yin, R. K. 2016. Qualitative Research From Start to Finish. The Guilford Press.
[38] Creswell, J. W. 2013. Qualitative Inquiry and Research Design: Choosing Among Five Approaches. SAGE Publications.
[39] Petruch, M. y Walcher, D. 2021. Timber for future? Attitudes towards timber construction by young millennials in Austria - Marketing implications from a representative study. Journal of Cleaner Production, 294: 126324. doi: https://doi.org/10.1016/j.jclepro.2021.126324
[2] TEDx Talks. 2019. Timber Towers of Tomorrow|Michael Ramage|TEDx Cambridge University [video]. YouTube. https://www.youtube.com/watch?v=p8PGGmTMjWQ
[3] Xu, H. et al. 2022. Large-scale compartment fires to develop a self-extinction design framework for mass timber-Part 1: Literature review and methodology. Fire Safety Journal, 128: 103523. doi: https://doi.org/10.1016/j.firesaf.2022.103523
[4] Guerra, M. y Abebe, Y. 2019. Pairwise elicitation for a decision support framework to develop a flood risk response plan. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 5(1): 011004. doi: https://doi.org/10.1115/1.4040661
[5] Dieste, A. etal. 2018. Forest-Based Bioeconomy Areas. Universidad de la República Uruguay.
[6] Naciones Unidas. 2018. La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para America Latina y el Caribe. Biblioteca Digital AECID. https://bibliotecadigital.aecid.es/bibliodig/es/consulta/registro.do?control=ES-MAAEC20190011211
[7] Guerra, M. A. y Shealy, T. 2018. Teaching user-centered design for more sustainable infrastructure through role-play and experiential learning. Journal of Professional Issues in Engineering Education and Practice, 144(4). doi: https://doi.org/10.1061/(ASCE)EI.1943-5541.0000385
[8] The Ultimate Renewable. 2010. Andrew Waugh on Stadthaus.mp4 [video]. YouTube. https://www.youtube.com/watch?v=EsX1YO91Do8
[9] Foster, R. M. y Ramage, M. H. 2017. Briefing: super tall timber – Oakwood Tower. Proceedings of the Institution of Civil Engineers - Construction Materials, 170(3): 118-122. doi: https://doi.org/10.1680/jcoma.16.00034
[10] Wiegand, E. y Ramage, M. 2021. The impact of policy instruments on the first generation of tall wood buildings. Building Research & Information, 50(3): 1-21. doi: https://doi.org/10.1080/09613218.2021.1905501
[11] Burry, J. y Sabin, J. 2020. Introduction: Fabricate 2020: Making Resilient Architecture. En B. Sheil, y M. Skavara (Eds.), Fabricate (pp.8-18). UCL Press. doi: https://doi.org/10.2307/j.ctv13xpsvw.1
[12] Ramage, M., Foster, R., Smith, S., Flanagan, K. y Bakker, R. 2017. Super tall timber: design research for the next generation of natural structure. The Journal of Architecture, 22(1), 104-122. doi: https://doi.org/10.1080/13602365.2016.1276094
[13] Ugalde, D., Almazán, J. L., Santa María, H. y Guindos, P. 2019. Seismic protection technologies for timber structures: a review. Eur. J. Wood Prod., 77(2): 173–194. doi: https://doi.org/10.1007/s00107-019-01389-9
[14] Rubalcava, A. 2023, mayo 11. Engineers Shake Tallest Full-scale Building Ever Constructed on UC San Diego Earthquake Simulator. UC San Diego. https://today.ucsd.edu/story/engineers-shake-tallest-full-scale-building-ever-constructed-on-uc-san-diego-earthquake-simulator
[15] Blanchet, P. y Breton, C. 2020. Wood productions and renewable materials: the future is now. Forests, 11(6): 657. doi: https://doi.org/10.3390/f11060657
[16] APA. 2019. Engineered Wood Construction Guide. The Engineered Wood Association.
[17] Fraile, E., Ferreiro, J., Martínez de Pison, F. J. y Pernia-Espinoza, A. V. 2019. Effects of design and construction on the carbon footprint of reinforced concrete columns in residential buildings. MATERIALES dE CONSTRUCCIÓN, 69(335): 193. doi: https://doi.org/10.3989/mc.2019.09918
[18] Ravenscroft, T. 2017. What is Cross Laminated Timber (CLT)? The B1M. https://www.theb1m.com/video/what-is-cross-laminated-timber-clt
[19] C. Müller. 2000. Otto Hetzer Begründer des Holzleimbaus. Studiengemeinschaft Holzleimbau.
[20] Valldeby, D. 2020. A global solution for a locally active industry. Wood Magazine, 2: 17. https://www.swedishwood.com/publications/wood-magazine/2020-2/gerhard-schickhofer/
[21] Hermoso, E., Luengo, E. y Cabrero, J. C. 2017. Metodologías para la evaluación de calidad de encolado de la madera contralaminada (CLT). II Congreso Latinoamericano de Estructuras de Madera + II Congreso Ibero-Latinoamericano de la Madera en la Construcción. Buenos Aires, Argentina. https://clem-cimad2017.unnoba.edu.ar/papers/T4-07.pdf
[22] Chen, C., Pierobon, F. y Ganguly, I. 2019. Life cycle assessment (LCA) of cross-laminated timber (CLT) produced in western washington: the role of logistics and wood species mix. Sustainability, 11(5): 1278. doi: https://doi.org/10.3390/su11051278
[23] Coombs, S. 2018. The development of the building envelope using Welsh-grown timber: a study through prototyping. The Journal of Architecture, 23(1): 78–114. doi: https://doi.org/10.1080/13602365.2018.1424394
[24] Ministerio de Agricultura, Ganadería, Acuacultura y Pesca. 2016. Programa de Incentivos para Reforestación con Fines Comerciales. Fliphtml5. https://fliphtml5.com/wtae/lgui/basic
[25] Wang, J. Y. et al. 2018. Durability of mass timber structures: a review of the biological risks. WFS, 50: 110-127. doi: https://doi.org/10.22382/wfs-2018-045
[26] Llana, D. F., Arriaga, F., Esteban, M. y Íñiguez-González, G. 2019. Comparison between wet and dry timber visual strength grading according to the Spanish (UNE 56544) and German (DIN 4074-1) standards. Materiales de Construcción, 69(336): 205. doi: https://doi.org/10.3989/mc.2019.03319
[27] S utton, A., Black, D. y Walker, P. 2001. An introduction to low-impact building materials. Introduction Paper, 15(11): 6. https://www.thenbs.com/PublicationIndex/documents/details?DocId=298934
[28] Herzog, T., Natterer, J., Schweitzer, R., Volz, M. y Winter, W. 2004. Timber Construction Manual. Birkhauser. doi: https://doi.org/10.11129/detail.9783034614634
[29] Zelinka, S.L., Pei, S., Bechle, N.J., Sullivan, K.F., Ottum, N., Rammer, D.R., & Hasburgh, L.E. 2018. Performance of wood adhesives for cross laminated timber under elevated temperature. CTE 2018-World Conference on Timber Engineering. Seoul, Republic of Korea. https://www.fpl.fs.usda.gov/documnts/pdf2018/fpl_2018_zelinka004.pdf
[30] Čolić, A. 2021. Study of the char fall-off phenomenon in cross-laminated timber under fire conditions. [Master's thesis, The University of Edinburgh]. Research Gate. doi: https://doi.org/10.13140/RG.2.2.10704.84480
[31] Conde-García, M., Tenorio-Ríos, J. A. y Fernández-Golfín, J. 2021. Experimental evaluation of the effect of different design conditions on the risk of decay in solid wood exposed to outdoor climate. Materiales de Construcción, 71(342): e247. doi: https://doi.org/10.3989/mc.2021.12220
[32] B1M. 2017. Top 5: The World's Tallest Timber Buildings. TheB1M. https://www.theb1m.com/video/top-5-the-world-s-tallest-timber-buildings
[33] APA. 2014. APA-4 Best Practices for Glulam Installation. The Engineered Wood Association, 25: 620-7400. https://www.anthonyforest.com/assets/pdf/apa/glulam/4_Best_Practices_for_Glulam_Installation.pdf
[34] APA. 2021. Selección y Especificación de Madera Contralaminada (CLT). The Engineered Wood Association.
[35] Delgado, A., Pereira, C., De Brito, J. y Silvestre, J. D. 2018. Defect characterization, diagnosis and repair of wood flooring based on a field survey. Materiales de Construcción, 68(329): 149. doi: https://doi.org/10.3989/mc.2018.01817
[36] Hildebrandt, J., Hagemann, N. y Thrän, D. 2017. The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society, 34: 405-418. doi: https://doi.org/10.1016/j.scs.2017.06.013
[37] Yin, R. K. 2016. Qualitative Research From Start to Finish. The Guilford Press.
[38] Creswell, J. W. 2013. Qualitative Inquiry and Research Design: Choosing Among Five Approaches. SAGE Publications.
[39] Petruch, M. y Walcher, D. 2021. Timber for future? Attitudes towards timber construction by young millennials in Austria - Marketing implications from a representative study. Journal of Cleaner Production, 294: 126324. doi: https://doi.org/10.1016/j.jclepro.2021.126324
Copyright © 2024 Patricio José Zaldumbide, Emir Israel Fuentes, Miguel Andrés Guerra
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License