Shear Design of Reinforced Concrete Elements with Steel Fibers
Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i2.2342
Abstract
Experimental research shows that the addition of ductile fibers improves the tensile strength, ductility and concrete's energy absorption capacity. As a consequence of the improvement of the post-cracking behavior, the addition of dispersed ductile fibers can increase the ductility, the shear resistance and the toughness of reinforced concrete beams, changing the type of failure from brittle to ductile. Many studies have considered the possibility of using steel fibers to partially resist shear and thus decrease shear reinforcement. This concept has even been adopted by some design codes such as ACI-318 or the Fib Model Code 2010 and has great potential for application in critical points of reinforced concrete structures where it is difficult to arrange shear reinforcement, such as beam - column joints. Despite this, fiber-reinforced concrete is still rarely used in load - bearing elements. In this work, it is proposed to numerically study the behavior of fiber-reinforced concrete beams tested at shear by other researchers in order to evaluate the contribution of steel fibers to the mechanism of resistance to shear.
Keywords
fiber-reinforced concrete; steel fibers; shear design
Funding
The authors of the paper thank: the Council of Researchers of the UNT, CONICET, the National Agency for the Promotion of Research and the Research Project PICT 2017-1313.
Full Text
PDF - Viewed/Downloaded: 3 TimesReferences
[1] Möller, O. 2007. Hormigón Armado - Conceptos básicos y diseño de elementos con aplicación.
[2] Fasciolo, M., Conforti, A., Zerbino, R., & Plizzari, G. 2018. Control de fisuración en vigas de hormigones reforzados con diferentes fibras. HAC2018 Congreso Iberoamericano de Hormigón Autocompactante y Hormigones Especiales, 619-628.
[3] Zerbino, R., Barragán, B. E., Conforti, A., Cuenca Asensio, E., Gettu, R., Giaccio, G. Vivas, J. C. 2020. Hormigón Reforzadon con Fibras. Asociación Argentina de Tecnología del Hormigón (AATH).
[4] Amin, A. 2015. Post Cracking Behaviour of Steel Fibre Reinforced Concrete: from Material to Structure. Tesis doctoral.
[5] di Prisco, M; Colombo, M; Dozio, D. 2013. Fibre-reinforced concrete in fib Model Code 2010: principles, models and test validation. Structural Concrete, 14: 342-361.
[6] Código Modelo fib 2010. 2012. Final draft. fib CEB-FIP bulletin 65-66. Fédération Internationale du Béton, Switzerland.
[7] Amin, A; Foster, S;. 2016. Shear strength of steel fibre reinforced concrete beams with stirrups. Engineering Structures, 323-332.
[8] Menetrey, P., & Willam, K. 1995. Triaxial failure criterion for concrete and its generalization. ACI Structural Journal, 92: 311-318.
[9] Frediani, M; Almenar, M; Luccioni, B. 2019. Refuerzo de vigas de hormigón armado con hormigón de altas prestaciones reforzado con fibras. Proyecto Final de Carrera de Ingeniería Civil.
[10] Khanlou, A; MacRae, G; Scott, A; Hicks, S; Clifton, G. 2013. Shear Performance of Steel Fibre-Reinforced Concrete. Steel Innovatios Conference.
[2] Fasciolo, M., Conforti, A., Zerbino, R., & Plizzari, G. 2018. Control de fisuración en vigas de hormigones reforzados con diferentes fibras. HAC2018 Congreso Iberoamericano de Hormigón Autocompactante y Hormigones Especiales, 619-628.
[3] Zerbino, R., Barragán, B. E., Conforti, A., Cuenca Asensio, E., Gettu, R., Giaccio, G. Vivas, J. C. 2020. Hormigón Reforzadon con Fibras. Asociación Argentina de Tecnología del Hormigón (AATH).
[4] Amin, A. 2015. Post Cracking Behaviour of Steel Fibre Reinforced Concrete: from Material to Structure. Tesis doctoral.
[5] di Prisco, M; Colombo, M; Dozio, D. 2013. Fibre-reinforced concrete in fib Model Code 2010: principles, models and test validation. Structural Concrete, 14: 342-361.
[6] Código Modelo fib 2010. 2012. Final draft. fib CEB-FIP bulletin 65-66. Fédération Internationale du Béton, Switzerland.
[7] Amin, A; Foster, S;. 2016. Shear strength of steel fibre reinforced concrete beams with stirrups. Engineering Structures, 323-332.
[8] Menetrey, P., & Willam, K. 1995. Triaxial failure criterion for concrete and its generalization. ACI Structural Journal, 92: 311-318.
[9] Frediani, M; Almenar, M; Luccioni, B. 2019. Refuerzo de vigas de hormigón armado con hormigón de altas prestaciones reforzado con fibras. Proyecto Final de Carrera de Ingeniería Civil.
[10] Khanlou, A; MacRae, G; Scott, A; Hicks, S; Clifton, G. 2013. Shear Performance of Steel Fibre-Reinforced Concrete. Steel Innovatios Conference.
Copyright © 2024 Díaz Fondevila Alejandra, Almenar Martín
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License