Optimal Load Factors for Seismic Design of Buildings

Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i1.2159

Juan Bojórquez Mora1, Sonia E. Ruiz Gómez2

1. School of Engineering, Autonomous University of Sinaloa, Calzada de las Américas and Boulevard Universitarios S/N, University City, Culiacán, Sinaloa, Mexico.
2. Institute of Engineering, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico.

Abstract

This paper reviews the load combinations for the design of buildings established in the Federal District Building Regulations (RCDF-2004) and its Complementary Technical Standards (NTC-2004). New load factors are proposed to be specified in the next version of the RCDF. The combination of gravity load (dead load plus live load) and the combination of earthquake load (dead load, live load and earthquake load) are revised. A methodology is proposed to establish optimal load factors and combinations that guarantee the minimum expected total cost during the lifetime of the structure and that the probability of failure is at least equal to that implied in the RCDF-2004. Artificial Neural Networks are used to estimate structural reliability.

Keywords

load combination; failure probability; total expected cost; seismic design; artificial neural networks

Funding

This work was part of the CONACYT Basic Science Project 287103 entitled New Formulation to Obtain Optimal Load Factors for Seismic Design of Buildings.

References

[1] Engin A, Fred M, Michel G. 2001. Cost and safety optimization of structural design specifications, Reliability Engineering and System Safety, Vol. 73, No. 3, pp. 205-212. https://www.sciencedirect.com/science/article/pii/S0951832001000461
[2] American Society of Civil Engineers. 2010, Minimum design loads for buildings and others structures, American Society of Civil Engineers, ASCE, Reston, VA. https://ascelibrary.org/doi/book/10.1061/9780784412916
[3] A. H.-S. Ang. 2011. Life-cycle considerations in risk-informed decisions for design of civil infrastructures, Structure and Infrastructure Engineering, Vol. 7, No. 1-2, pp. 3-9. http://dx.doi.org/10.1080/15732471003588239
[4] Barone G, Frangopol DM. 2015. Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost, Structural Safety, Vol. 48, pp. 40-50. http://dx.doi.org/10.1016/j.strusafe.2014.02.002
[5] Base de Datos de Sismos Mexicanos, SMIS. 2015. Sociedad Mexicana de Ingeniería Sísmica, A. C.
[6] Bojórquez E, Chávez R, Reyes-Salazar A, Ruiz SE, Bojórquez J. 2017. A new ground motion intensity measure IB. Soil Dynamics and Earthquake Engineering, Vol. 99, pp. 97-107. https://doi.org/10.1016/j.soildyn.2017.05.011
[7] Bojórquez J, Tolentino D, Yunes J, Ruiz SE. 2014. Diseño de edificios de concreto reforzado utilizando redes neuronales artificiales, XIX Congreso Nacional de Ingeniería Estructural, Puerto Vallarta, Jalisco.
[8] Bojórquez J, Ruiz SE, Tolentino D, Bojórquez E. 2015, Diseño de edificios de concreto reforzado utilizando RNA, Concreto y Cemento: Investigación y Desarrollo, Vol 7, No. 2, pp. 60-78.
[9] Bojórquez J, Ruiz SE, Bojórquez E, Reyes-Salazar A. 2016. Probabilistic seismic response transformation factors between SDOF and MDOF systems using artificial neural networks, Journal of Vibroengineering, Vol. 18, No. 4, pp. 2248-2262. Doi: 10.21595/jve.2016.16506
[10] Bojórquez J, Ruiz SE, Ellingwood B, Reyes-Salazar A, Bojórquez E. 2017. Reliability-based optimal load factors for seismic design of buildings, Engineering and Structures, No. 151. pp. 527-539. https://doi.org/10.1016/j.engstruct.2017.08.046
[11] Carr A. 2008. RUAUMOKO inelastic dynamic analysis program, Department of Civil Engineering, University of Canterbury, Christchurch, Nueva Zelanda.
[12] Chan S, Ruiz SE, Montiel M. 2005. Escalamiento de acelerogramas y mínimo número de registros requeridos para el análisis de estructuras, Revista de Ingeniería Sísmica, No. 7, pp. 1-24.
[13] Cornell CA. 1968. Engineering seismic hazard analysis, Bulletin of the Seismological Society of America, Vol. 58, No.5, pp. 1583-1606.
[14] Cornell CA, Jalayer F, Hamburger RO, Foutch DA. 2002. The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines, Journal of Structural Engineering, No. 128, pp. 526-533.
[15] De León D. 1991. Integrating socio-economics in the development of criteria for optimal Aseismic design of R/C buildings, Tesis de Doctorado, Universidad de California.
[16] De León D, Ang A H-S. 1995. A damage model for reinforced concrete buildings. Further study with the Mexico city earthquake, Structural Safety and Reliability, pp. 2081-2087.
[17] Ellingwood BR. 1994a. Probability-based codified design for earthquakes, Engineering Structures, Vol. 6, No. 7, pp. 498-506. http://dx.doi.org/10.1016/0141-0296(94)90086-8
[18] Ellingwood BR. 1994b. Probability-based codified design: past accomplishments and future challenges, Structural Safety, Vol. 13, No. 3, pp. 159-176. http://dx.doi.org/10.1016/0167-4730(94)90024-8
[19] Esteva L. 1968. Bases para la formulación de decisiones de diseño sísmico, Tesis de Doctorado, Facultad de Ingeniería, UNAM, México.
[20] Esteva L, Campos D, Díaz-López O. 2011. Life-cycle optimization in Earthquake Engineering, Structure and Infrastructure Engineering, Vol. 7, pp. 33-49. http://dx.doi.org/10.1080/15732471003588270
[21] Gaceta Oficial del Distrito Federal. 2004. Normas Técnicas Complementarias para Diseño por Sismo, México, DF.
[22] Gayton N, Mohamed A, Sorensen JD, Pendola M, Lemaire M. 2004. Calibration methods for reliability-based design codes, Structural Safety, Vol. 26, No. 1, pp. 91-121. http://dx.doi.org/10.1016/S0167-4730(03)00024-9
[23] Granados R. 2015. Comunicación personal, México D.F.
[24] INEGI. 2015. Instituto Nacional de Estadística y Geografía, http://www.inegi.org.mx/
[25] Informe del Instituto de Ingeniería, UNAM. 1985. Efectos de los sismos de septiembre de 1985 en las construcciones de la Ciudad de México, México.
[26] Lagaros ND. 2007. Life-cycle cost analysis of design practices for RC framed structures, Bulletin of Earthquake Engineering, Vol. 5, pp. 425-442. https://link.springer.com/article/10.1007/s10518-007-9038-1
[27] Mitropoulou CCh, Lagaros ND, Papadrakakis M. 2011. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions, Reliability Engineering and System Safety, Vol. 96, No. 10, pp. 1311-1331. https://doi.org/10.1016/j.ress.2011.04.002
[28] Montiel MA, Ruiz SE. 2007. Influence of structural capacity uncertainty on seismic reliability of building structures under narrow-band motions, Earthquake Engineering and Structural Dynamics, Vol. 36, pp. 1915-1934. https://doi.org/10.1002/eqe.711
[29] Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, 2004. Gaceta Oficial del Distrito Federal, 6 de octubre, México, D.F. México.
[30] Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño de Edificaciones. NTCCA. 2004. Administración Pública del Distrito Federal, Jefatura de Gobierno, México, D.F.
[31] Otani S. 1974. SAKE-A computer program for inelastic response of R/C frames to earthquakes, Structural Research Series, University of Illinois, Urbana, No. 413.
[32] Reglamento de Construcciones para el Distrito Federal, RCDF. 2004. Administración Pública del Distrito Federal, Jefatura de Gobierno, México, D.F.
[33] Rubinstein RY. 1981. Simulation and the Monte Carlo Method, John Wiley and Sons, pp. 372.
[34] Shome N, AC Cornell. 1999. Probabilistic seismic hazard demand analysis of nonlinear structures, Reliability of Marine Structures Programs, Report No. RMS-35, Dept. of civil Eng., Stanford University, Stanford, CA.
[35] Sorensen JD, IB Kroon, MH Faber. 1994. Optimal reliability-based code calibration, Structural Safety, Vol. 15, No. 3, pp. 197-208. http://dx.doi.org/10.1016/0167-4730(94)90040-X
[36] Surahman A, KB Rojaniani. 1983. Reliability based optimum design of concrete frames, Journal of the Structural Division, ASCE, Vol. 109, No. 3, pp. 71-76.
[37] Tokyo Metropolitan Government. 1985. Report in the investigation of the earthquake in Mexico, junio de 1985.
[38] Tolentino D, Ruiz SE. 2013. Time intervals for maintenance of offshore structures based on multi-objective optimization, Mathematical Problems is Engineering, Vol. 2013; No. 125856. http://dx.doi.org/10.1155/2013/125856
[39] Vamvatsikos D, CA Cornell. 2002. The incremental dynamic analysis and its application to performance-based earthquake engineering, Proceedings of the 12th European Conference on Earthquake Engineering, Paper 479, Londres, UK. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.3199
[40] Velázquez I, J Bojórquez, SE Ruiz, F García-Jarque. 2015. Costos iniciales de edificios de C/R en la zona IIIb considerando distintas combinaciones de factores de carga, XX Congreso Nacional de Ingeniería Sísmica, Acapulco, Gro.
[41] JP Wang, DR Huang, SC Chang, YM Wu. 2014. New evidence and perspective to the poisson process and earthquake temporal distribution from 55,000 events around Taiwan since 1900, Natural Hazards Review, Vol. 15, No. 1, pp. 38-47. https://ascelibrary.org/doi/10.1061/%28ASCE%29NH.1527-6996.0000110
[42] Wen YK. 2001. Reliability and performance-based design, Structural Safety, Vol. 23, No. 4, pp. 407-428. http://dx.doi.org/10.1016/S0167-4730(02)00011-5
[43] Wen YK, Kang YJ. 2001a. Minimum building life-cycle cost design Criteria. I: Methodology, Journal of Structural Engineering, Vol. 127, No. 3, pp. 330-337.
[44] Wen YK, Kang YJ. 2001b. Minimum building life-cycle cost design Criteria. II. Applications, Journal of Structural Engineering, Vol. 127, No. 3, pp. 338-346.

Copyright © 2024 Juan Bojórquez Mora, Sonia E. Ruiz Gómez

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License