Service Life Design of Reinforced Concrete Maritime Infrastructure: Holistic Approach with Experiences from Chilean Cases

Journal: Journal of Building Technology DOI: 10.32629/jbt.v6i1.2116

Luis Ebensperger

Construtechnik SpA, Santiago, Chile.

Abstract

The consideration of the useful life of reinforced concrete in the different stages of a structure's life cycle, as a distinguishing factor in the design process for performance under aggressive environmental conditions, has presented new challenges in construction. This includes the development of new regulations incorporating innovative engineering materials, performance tests and modeling processes to estimate concrete deterioration over time, and construction processes ensuring adequate Quality Control and Quality Assurance (QAQC). As a result, infrastructure projects have been able to exceed their intended lifespan, maintaining serviceability levels for more than 100 years. One such example is the Chacao Bridge project currently under construction in southern Chile. This paper provides an overview of project stages from a holistic approach, focusing on aspects inherent to planning including design and construction processes, control stages for monitoring deterioration levels through regular diagnostics and appropriate monitoring to support ongoing structural health management. Additionally, it presents real case design examples carried out with specific models created for each case.

Keywords

concrete; durability; service life design; holistic approach

References

[1] ASTM C1556. 2016. Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. ASTM International, West Conshohocken, PA, USA.
[2] BS1881. 1988. Testing concrete. Part 204 - Recommendations on the use of electromagnetic covermeters. British Standards Institutions, Milton Keynes, UK.
[3] Di Pace, G., Ebensperger, L., Torrent, R. and Bueno, V. 2019. From cradle to maturity: a holistic service-life approach for concrete bridges. Concrete International, 41(4): 47-54.
[4] Ebensperger, L. y Olivares, M. 2019. Envejecimiento a mediano plazo de probetas: factor incidente en las estimaciones de vida útil. XV Congreso Latinoamericano de Patología de la Construcción y XVII Congreso de Control de Calidad en la Construcción, CONPAT 2019, Chiapas, México.
[5] Ebensperger, L. y Olivares, M. 2017. Especificación y control de durabilidad del hormigón in site con ensayos no-destructivos: metodología integral de estimación de vida útil con mediciones de permeabilidad al aire y espesor de recubrimiento. Presentación en el Segundo Congreso Internacional de Puentes, Dirección de Vialidad, Santiago, Chile.
[6] EN. 2004. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Standard EN 1992-1-1, Brussels, Belgium.
[7] fib. 2010. Model code 2010 - Final draft, v.1. Féderation Internationale du Béton, Lausanne, Switzerland.
[8] fib. 2006. Modelo duracrete. fib Bulletin 34. Féderation Internationale du Béton, Lausanne, Switzerland.
[9] Gjørv, O.E. 2013. Durability design of concrete structures in severe environments. CRC Press, USA.
[10] ISO16311. 2014. Maintenance and repair of concrete structures - Part 1: General principles. Geneva, Switzerland.
[11] Li, Q., Li, K., Zhou, X., Zhang, Q. and Fan, Z. 2015. Model-based durability design of concrete structures in Hong Kong-Zhuhai-Macau sea link project. Structural Safety, 53: 1-12.
[12] Life-365. 2012. Service life prediction model TM and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides. Life-365 Consortium II.
[13] NCh170. 2016. Hormigón - requisitos generales. Instituto Nacional de Normalización INN, Santiago, Chile.
[14] NTBuild492. 1999. Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments. Nordtest, Espoo, Finland.
[15] Oberreuter, R. 2022. Infraestructura costera y portuaria en Chile: desafíos para su desarrollo. Hormigón al Día, 78: 30-33.
[16] PIANC. 2016. Recommendations for increased durability and service life of new marine concrete infrastructure. Report N°162, Brussels, Belgium.
[17] Repetto, F., Boré, G., Eliceiry, M., Sabaini, S. and Covarrubias, M. 2019. An innovative approach for corrosion control to enable asset management of steel elements in coastal infrastructure. Obras y Proyectos, 26: 37-42.
[18] SIA 262/1. 2013. Betonbau - Ergänzende Festlegungen (Concrete structures - supplementary specifications). Swiss Society of Engineers and Architects SIA, Zurich, Switzerland.
[19] Torrent, R. and Frenzer, G. 1995. Study on methods to measure and evaluate the characteristics of the cover concrete on site - Part II. Report N° 516, Swiss Federal Highways Office, Bern, Switzerland.
[20] Torrent, R. and Ebensperger, L. 1993. Study on methods to measure and evaluate the characteristics of the cover concrete on site. Report N° 506, Swiss Federal Highways Office, Bern, Switzerland.
[21] Torrent, R.J., Neves, R.D. and Imamoto, K. 2022. Concrete permeability and durability performance: from theory to field applications. CRC Press, USA.
[22] Tuutti, K. 1982. Corrosion of steel in concrete. Research Report 4.82, Swedish Cement and Concrete Research Institute CBI, Stockholm, Sweden.

Copyright © 2024 Luis Ebensperger

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License