Anchors Post-installed in High Strength Concrete

Journal: Journal of Building Technology DOI: 10.32629/jbt.v5i2.1269

Yuber Mauricio Ruda Arias, Diego Fernando Páez Moreno

Pedagogical and Technological University of Colombia, Colombia.

Abstract

Nowadays, the great constructions of Colombia and the world, especially road infrastructure, have encouraged the use of high strength concrete. The use of post-installed anchors has also grown simultaneously in all concrete structures. Therefore, an experimental procedure was developed in this investigation to assess post-installed anchor systems based on tensile tests with high strength concrete specimens. The evaluation considers the analysis of the tensile tests results of test specimens with an anchoring system for three lengths (6, 9 and 12 times the diameter of the rod) with two rod diameters (3/8" and 5/8") in two grades of high strength concrete (5000 Psi and 6000 Psi) to determine the effective length and system load. The analysis carried out on the experimental test is to correlate the result of the maximum strength of steel reinforcement used (fy = 4200 Psi) with the variable post-installed anchoring systems. The results obtained are the percentage of system strength depending on anchor length and the effective length that ensures the steel creep and the correlations between the percentage of effective strength achieved for each anchorage length and the use of high strength concrete. With the above parameters, the contribution of high strength concrete to the efficiency of the post-installed anchorage systems was analyzed.

Keywords

post-installed anchor; high strength concrete

References

[1] A. Shah, Q. Ali, B. Alam, K. Shahzada, et al., "Study on Performance Evaluation of Adhesive Anchors in Concrete", International Journal of Advanced Structures and Geotechnical Engineering, vol. 1, no. 2, pp. 74-78, 2012.
[2] M. Obata, M. Inoue, Y. Goto, "The Failure Mechanism and the Pull-out Strength of a Bond-type Anchor Near a Free Edge", Mechanics of Materials, no. 28, pp. 113-122, 1998. https://doi.org/10.1016/S0167-6636(97)00052-5.
[3] U. Priyank, S. Kimar, "Pull-out Capacity of Adhesive Anchors: An Analytical Solution", International Journal of Adhesion and Adhesives, no. 60, pp. 54-65, 2015. https://doi.org/10.1016/j.ijadhadh.2015.03.006.
[4] L. Contrafatto, R. Cosenza, "Prediction of the Pull-out Strength of Chemical Anchors in Natural Stone", Frattura ed Integri-tà Strutturale, no. 29, pp 196-208, 2014. https://doi.org/10.3221/IGF-ESIS.29.17.
[5] A. Braimah, R. Guilbeault, E. Contestable, "Strain Rate Behaviour of Adhesive Anchors in Masonry", Engineering Structures, vol. 67, pp. 96-108, 2014. https://doi.org/10.1016/j.engstruct.2014.02.018.
[6] S. Yilmaz, M. A. Ozen, Y. Yardim, "Tensile Behavior of Post-installed Chemical Anchors Embedded to Low Strength Concrete", Construction and Building Materials, vol. 47, pp. 861-866, 2013. https://doi.org/10.1016/j.conbuildmat.2013.05.032.
[7] O. Caliskan, S. Yilmaz, H. Kaplan, N. Kirac, "Shear Strength of Epoxy Anchors Embedded into Low Strength Concrete", Construction and Building Materials, vol. 38, pp. 723-730, 2013. https://doi.org/10.1016/j.conbuildmat.092012.020.
[8] G. Kwon, M. D. Engelhardt, R. E. Klingner, "Behavior of Post-installed Shear Connectors Under Static and Fatigue Loading", Journal of Constructional Steel Research, vol. 66, no. 4 pp. 532-541, 2010. https://doi.org/10.1016/j.jcsr.2009.09.012.
[9] M. S. Hoehier, P. Mahrenholtz, R. Eligehausen, "Behavior of Anchors in Concrete at Seismic-relevant Loading Rates", ACI Structural Journal, vol. 108, pp. 238-247, 2011. https://doi.org/10.14359/51664259.
[10] M. McVay, R. Cook, K. Krishnamurthy, "Pullout Simulation of Post Installed Chemically Bonded Anchors", Journal Structural Engineering, vol. 122, no. 9, pp. 1016-1024, 2016. https://doi.org/10.1061/(asce)0733-9445(1996)122:9(1016).
[11] W. Dongpo, W. Dongsheng, H. Siming, Z. Jun, O. Chaojun, "Behavior of Post-installed Large-diameter Anchors in Concrete Foundations", Construction and Building Materials, vol. 95, pp. 124, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.129.
[12] S. Yilmaz, M. A. Ozen, Y. Yardim, "Tensile Behavior of Post-installed Chemical Anchors Embedded to Low Strength Concrete", Construction and Building Materials, vol. 47, pp. 861-866, 2013. https://doi.org/10.1016/j.conbuildmat.2013.05.032.
[13] American Concrete Institute, "Manual de práctica del hormigón: Informe sobre el estado del arte de los anclajes en hormigón", ACI 355.1R-91, Estados Unidos, 1997, pp. 355.1R-1-75.
[14] Argos, "Concreto de altas resistencias" 2014. [En línea]. Disponible en: http://www.argos.co/Media/Colombia/images/Ficha%20t%C3%A9cnica%20Concreto%20Altas%20Resistencias.pdf.
[15] Cemex, "Concretos especiales" 2016 [En línea]. Disponible en: http://www.cemexcolombia.com/SolucionesConstructor/ConcretosEspeciales.aspx.
[16] L. Rocha, "Concretos especiales en la construcción. Concretos de alta resistencia", en Compilación de artículos de investigación octubre 2009. México, D. C.: Departamento de Materiales UAM, 2009, pp. 19-33.
[17] A. J. Murillo, E. Y. Salamanca, "Optimización de los materiales para hormigones de alta resistencia comprendidos entre 4000 Psi (28 MPa) - 6000 Psi (42 MPa), sin aditivos," Tesis de pregrado, Facultad de Ingeniería Civil, Universidad de la Salle, Bogotá, Colombia, 2006.
[18] Sika Colombia S.A., "Hoja técnica SikaPlast MO®," 2015. [En línea]. Disponible en: https://col.sika.com/dms/getdocument.get/16dbbdc1-a427-359c-b51d-b902ec1bb4fb/co-ht_SikaPlast%20MO.pdf.

Copyright © 2023 Yuber Mauricio Ruda Arias, Diego Fernando Páez Moreno

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License