The Georadar in the Evaluation of Reinforced Concrete Structures Affected by Corrosion

Journal: Journal of Building Technology DOI: 10.32629/jbt.v5i1.1127

Javier Ballote Álvarez, Ernesto A. Hernández Martín, Orlando R. Carraz Hernández

Technological University of Havana Jose Antonio Echeverria (Cujae), Cuba

Abstract

Ground Penetrating Radar (GPR) is a geophysical method that has several applications in the field of civil engineering, one of the largest fields being the evaluation of the technical state of the affected reinforced concrete structures by corrosion. In Cuba, this method has not been widely used as a non destructive test (NDT), largely due to the lack of knowledge of its potential in civil engineering. This article performs a critical analysis of some investigations in which the georadar is applied to evaluate the technical state of tunnels, bridges and buildings. The regulatory framework that protects the use of the georadar as NDT in the world and the applications that it has had so far in Cuba are addressed. The electromagnetic responses of the method to various injuries and causes that cause damage to reinforced concrete such as fractures, cavities, areas of humidity, chloride penetration and corrosion itself are also presented.

Keywords

GPR; concrete; corrosion

References

[1] Holä, J.; Bien, J.; Sadowski, L.; Schabowicz, K. (2015) "Non-destructive and Semi-destructive Diagnostic of Concrete Structures in Assessment of Their Durability". Bulleting of the Polish Academy of Sciences, vol. 63, p. 87-96.
[2] Aguirre A. M.; R. Mejía de Gutiérrez. (2013) "Durabilidad del hormigón armado expuesto a condiciones agresivas". Materiales de Construcción, vol. 63, p. 7-38.
[3] Porto Quintián, J. (2005) "Manual de patologías en las estructuras de hormigón armado" Universidade da Coruña. Escola Universitaria de Arquitectura Técnica.
[4] Tosti, F y Ferrante, C. (2019) "Using Ground Penetrating Radar Methods to Investigate Reinforced Concrete Structures". Surveys in Geophysics. https://doi.org/10.1007/s10712-019-09565-5. Springer.
[5] https://www.pcte.com.au/lmx-100-utility-location-gpr
[6] Martínez-Sala, R.; Mené-Aparicio, J.; Rodríguez-Abad, I. (2017) "Aplicación de la técnica del georradar en ingeniería civil: evaluación de la variación del contenido de agua en el hormigón" Hormigón y Acero; 68(283): 251–262.
[7] González Roura, N. (2013) "Comparación de técnicas no destructivas en la inspección del hormigón armado: Georradar versus tomografía ultrasónica". Proyecto fifin de máster (inédita). Universidad politécnica de Valencia.
[8] Pellicer Llopi, V. (2014) "Ensayos no destructivos en hormigón. Georradar y ultrasonidos". Universidad Politécnica de Valencia.
[9] Gacitúa Lovera, G. F. (2006) "Estudio en estructuras de hormigón armado mediante el uso de un radar de penetración terrestre". Trabajo de titulación para optar al título de Ingeniero Electrónico (inédita), Universidad Austral de Chile, Valdivia.
[10] Howland-Albear, J.J.; Castañeda-Valdés, A.; Corvo-Pérez, F.; Martín Acosta, A. R. (2014) "Estudio del ambiente agresivo costero de la Habana y su impacto sobre las estructuras de hormigón armado". Revista CENIC Ciencias Químicas, vol. 46, p. 1-8.
[11] Alla, A. (2016) "Análisis comparativo de normativas: ACI 318-14 y EHE-08". Trabajo de fifin de grado (inédita). Departamento de la tecnología de la construcción. Escuela Universitaria de Arquitectura Técnica.
[12] Avendaño Rodríguez, E. (2006) "Detección, tratamiento y prevención de patologías en sistemas de concreto estructural utilizados en estructura industrial". Trabajo de grado (inédita). Facultad de ingeniería civil. Universidad de Costa Rica. p. 19.
[13] Simoes Ventura, G.F. (2013) "Estudio experimental de los efectos de la corrosión de las armaduras en vigas continuas de hormigón armado". Tesis de máster (inédita). Universidad Politécnica de Barcelona.
[14] Pérez-Gracia, V.; F. García García.; I. Rodriguez Abad. (2008) "GPR Evaluation of the Damage Found in the Reinforced Concrete Base of a Block of Flats: A case study". DT&E International, vol. 41, p. 341-353.
[15] Hugenschmidt J. y A. Kalogeropoulos. (2009) "The Inspection of Retaining Walls Using GPR". Journal of Applied Geophysics, vol. 67, p. 335-344.
[16] Dinh K.; T. Zayed; A. Tarussov. (2013) "GPR Image Analysis for Corrosion Mapping in Concrete Slabs". En: CSCE 2013 General Conference Canada.
[17] Solla M.; Lagüela, S., Fernández, N.; Garrido, I. (2019) "Assessing Rebar Corrosion Through the Combination of Nondestructive GPR and IRT Methodologies". Remote Sensing, vol. 11.
[18] Parkinson, G. y Ékes, C. (2008) "Ground Penetrating Radar Evaluation of Concrete Tunnel Linings". En: 12th International Conference on Ground Penetrating Radar. England.
[19] Cassidy, N.J.; R., Eddies; S., Dods. (2011) "Void Detection Beneath Reinforced Concrete Sections: The Practical Application of Ground-Penetrating Radar and Ultrasonic Techniques". Journal of Applied Geophysics. vol. 74, p. 263-276.
[20] Xiang, L.; Zhou, H.; Shu, Z.; Tan, S.; Lian, G.; Zhu, J. (2013) "GPR Evaluation of the Damaoshan Highway Tunnel: A Case Study". NDT&E International, vol. 59, p. 68-76.
[21] Saricicek, I y Seren, A. (2014). "Zigina, Torul with Ground Penetrating Radar". IEEE Xplore. DOI: 10.1109/ICGPR.2014.6970452
[22] Prego, F. J.; Solla, M.; Núñez-Nieto, X.; Arias, P. (2016) "Assessing the Applicability of Ground-penetrating Radar to Quality Control in Tunneling Construction". ASCE.
[23] Kim, W., Ismail, A.; Anderson, N. L; Atekwana, E. A.; Buccellato. (2003) A. Non-destructive Testing (NDT) for Corrosion in Bridge Decks Using GPR. In Proceedings of the 3rd International Conference on the Application of Geophysical Methodologies and NDT to Transportation Facilities and Infrastructure, Geophysics 2003, Orlando, FL, USA.
[24] Ekes, C. (2011) "GPR: A New Tool for Structural Health Monitoring of Infrastructure". En: 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure. Canada.
[25] Morris, I.; Abdel-Jaber, H; Glisic, B. (2019) "Quantitative Attribute Analyses with Ground Penetrating Radar for Infrastructure Assessments and Structural Health Monitoring". Sensors, vol. 19(7).
[26] Istiaque Hasan, Md.; N. Yazdani. (2014) "Ground Penetrating Radar Utilization in Exploring Inadequate Concrete Covers in a New Bridge Deck". Case Studies in Construction Materials, vol. 1, p. 104-114.
[27] Beben D.; A. Mordak; W. Anigacz. (2013) "Ground Penetrating Radar applications to Testing of Reinforced Concrete Beams". Procedia Engineering, vol. 65, p. 242-247.
[28] Laurens, S., Balayssac, J. P.; Arliguie, G. (2005) "Non-destructive Evaluation of Concrete Moisture by GPR: Experimental Study and Direct Modeling". Materials and Structures, vol. 38, p. 827-832.
[29] Shihab, S.; W. Al-Nuaimy (2005). "Radius Estimation for Cylindrical Objects Detected by Ground Penetrating Radar". Subsurface Sensing Technologies and Applications, vol. 6, no. 2, p. 151-166.
[30] Lakshmi, K. A.; Rahamath, A. (2016) "Estimation of Rebar Radius Using Ground Penetrating Radar". International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE), vol. 22, no. 2.
[31] Lai, W-L.; Kind, T; Stoppel; M.; Wiggenhauser, H. (2013) "Measurement of Accelerated Steel Corrosion in Concrete Using Ground-penetrating Radar and a Modified Half-cell Potential Method". Journal of infrastructure Systems. ASCE.
[32] Hong, S.; Lai, W. L, Wilsch G.; Helmerich, Rosemarie; Helmerich, Robert. Günther, T.; Wiggenhauser, H. (2014) "Periodic Mapping of Reinforcement Corrosion in Intrusive Chloride Contaminated Concrete with GPR". Construction and Building Materials, vol. 66, p. 671-684.
[33] Krishnarajapete, Raju, R. (2015) "Estimation of Rebar Corrosion in Concrete Using Ground Penetrating Radar". Trabajo de maestría (inédita). Universidad de Texas y Arlington.
[34] Zaki, A.; Megat Johari, M. A.; Wan Hussin, W. M. A.; Jusman, Y. (2018) "Experimental Assessment of Rebar Corrosion in Concrete Slab Using Ground Penetrating Radar (GPR)". International Journal of Corrosion.
[35] Kabir, S. Y Zaki, A. (2011) "Detection and Quantification of Corrosion Damage Using Ground". En: Progress in Electromagnetics Research Symposium Proceedings, Marrakesh, Morocco.
[36] Lai, W. L.; Kind, T; Wiggenhauser, H. (2011) "Using Ground Penetrating Radar and Time–Frequency Analysis to Characterize Construction Materials". NDT&E International, vol. 44, pp. 111-120.
[37] Istiaque Hasan, Md.; N. Yazdani. (2015) "An Experimental Study for Quantitative Estimation of Rebar Corrosion in Concrete Using Ground Penetrating Radar". Hindawi Publishing Corporation. Vol 2016, p. 8.
[38] Sossa, V.; Pérez-Gracia, V.; González-Drigo, R.; Rasol, M. (2019) "Lab Non Destructive Test to Analyze the Effect of Corrosion on Ground Penetrating Radar Scans". Remote Sensing, vol. 11(23):2814.
[39] Lai, W-L; X. Dérobert, P. Annan, (2017) "A Review of Ground Penetrating Radar Application in Civil Engineering: A 30-year Journey from Locating and Testing to Imaging and Diagnosis". NDT&E International.
[40] Pavía Pérez, M. (2010) "Aplicaciones del georradar en ingenieria civil". Trabajo de Diploma en Ingeniería Civil (inédita). Facultad de Ingeniería Civil. Universidad Tecnológica de La Habana.
[41] AMERICAN SOCIETY OF CIVIL ENGINEERS ASCE 38-02 Estándar Guideline for the Collection and Depiction of Existing Subsurface Utility Data. ASCE. USA.
[42] AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM C 876-91). Standard Test Method for Half-cell Potentials of Uncoated Reinforcing Steel in Concrete. USA, 1991.
[43] AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM D6432-99) Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation. 2005
[44] AMERICAN SOCIETY FOR TESTING AND MATERIALS. (ASTM D6432-11) Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation. West Conshohocken, 2011.
[45] AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM D6087-08e1). Evaluating Asphalt Covered Concrete Bridge Decks Using Ground Penetrating Radar. West Conshohocken, 2015.
[46] Euro GPR.www.eurogpr.org. Fecha de consulta:15 de julio del 2020.
[47] NC-1109:2015. Estimación de la resistencia a compresión de los hormigones en las estructuras. ICS: 91.080.40. Oficina Nacional de Normalización (NC). Sitio web: www.nc.cubaindustria.cu
[48] RC-9002:2000. "Especificaciones para la realización de los estudios complementarios para la estimación de la resistencia a compresión de los hormigones en las estructuras". Regulaciones de la Construcción. Ministerio de la Construcción, Cuba.
[49] NC-695:2009. "Hormigón armado - determinación de la corrosión del acero de refuerzo por métodos electroquímicos galvanostáticos a probetas previamente elaboradas". ICS: 91.100.30. Oficina Nacional de Normalización (NC). Sitio web: www.nc.cubaindustria.cu
[50] Amran, T.S.T.; Ismail, M. P.; Ismail, M A; Amin, M S M; Ahmad, M R; Basri, N S M. (2017) "GPR Application on Construction Foundation Study". IOP Publishing, vol. 271.
[51] Hong, S. (2015) "GPR-based Periodic Monitoring of Reinforcement Corrosion in Chloride Contaminated Concrete" Tesis de maestría. ProQuest Number: 10695974. Berlin
[52] Wong, T. W.; Lai, W. W.; Sham, J. F.; Poon, C. "Hybrid Non-destructive Evaluation Methods for Characterizing Chlorideinduced Corrosion in Concrete". NDT and E International 107 (2019) 102123. https://doi.org /10.1016/j.ndteint.2019.05.008

Copyright © 2023 Javier Ballote Álvarez, Ernesto A. Hernández Martín, Orlando R. Carraz Hernández

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License