Research Progress of Intestinal Microecological Regulation in the Management and Therapy of Coronary Heart Disease
Journal: Advanced Journal of Nursing DOI: 10.32629/ajn.v6i3.4393
Abstract
In the contemporary period, the involvement of intestinal microecology in the management and therapy of coronary heart disease (CHD) has attracted significant attention. Research has demonstrated that intestinal microecology significantly influences the occurrence and development of CHD through microbial-derived metabolites (e.g. trimethylamine N-oxide, short-chain fatty acids), immune regulation, inflammatory response, and other mechanisms. In this comprehensive review, we discuss the evolution of research on intestinal microecology as a modulator of CHD, aimed at the mechanism of gut bacterial ecosystem dysbiosis among patients with CHD, as well as intestinal microecology-based CHD curative interventions, comprising probiotics, prebiotics, dietary interventions along with faecal bacterial transplantation, to offer novel insights and potential targets for the management and therapy of CHD. However, there are some limitations, including individual variability, unclear mechanisms, and limited clinical translation. Future studies should focus on mechanistic exploration and personalized interventions.
Keywords
intestinal microecology; coronary heart disease; dysbiosis
Full Text
PDF - Viewed/Downloaded: 2 TimesReferences
[1]Libby, P., Ridker, P. M., & Hansson, G. K. Inflammation in atherosclerosis: from pathophysiology to practice. Journal of the American College of Cardiology, 74(12), 1587-1597.
[2]Jie, Z., Xia, H., Zhong, S. L. The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 845.
[3]Tang, W. H. W., Wang, Z., Levison, B. S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 368(17), 1575-1584.
[4]Maruvada, P., Leone, V., Kaplan, L. M., & Chang, E. B. The human microbiome and obesity: moving beyond associations. Cell Host & Microbe, 22(5), 589-599.
[5]Li, X. S., Obeid, S., Klingenberg, R. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. European Heart Journal, 38(11), 814-824.
[6]Sender, R., Fuchs, S., & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533.
[7]Qin, J., Li, R., Raes, J. A human gut microbial gene catalogue established by metagenomic sequencing. nature, 464(7285), 59-65.
[8]Lozupone, C. A., Stombaugh, J. I., Gordon, J. I. Diversity, stability and resilience of the human gut microbiota. nature, 489(7415), 220-230.
[9]Rooks, M. G., & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341-352.
[10]Canani, R. B., Costanzo, M. D., Leone, L. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17(12), 1519-1528.
[11]Round, J. L., & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences , 107(27), 12204-12209.
[12]Peterson, L. W., & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141-153.
[13]Tang, W. H. W., Kitai, T., & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circulation Research, 120(7), 1183-1196. Koeth RA, et al. Intestinal microbiota metabolism of L- carnitine promotes atherosclerosis. Nat Med. 2013;19(5):576-585.
[14]Zhu, W. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. cell, 165(1), 111-124.
[15]Vinolo, M. A. Regulation of inflammation by short chain fatty acids. Nutrients, 3(10), 858-876.
[16]Kim, C. H. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Network, 13(6), 277-283.
[17]Belkaid, Y., & Hand, T. W. Role of the microbiota in immunity and inflammation. cell, 157(1), 121-141.
[18]Tabas, I., & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. science, 339(6116), 166-172.
[19]Ridker, P. M. Antiinflammatory therapy with canakinumab for atherosclerotic disease. New England Journal of Medicine, 377(12), 1119-1131.
[20]Violi F, Cammisotto V, Bartimoccia S, Pignatelli P, Carnevale R, Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023 Jan;20(1):24-37.
[21]Wang, Z. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. nature, 472(7341), 57-63.
[22]Smith, P. M. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. science, 341(6145), 569-573.
[23]Li J. Lactobacillus plantarum reduces TMAO via modulating gut microbiota in coronary heart disease: a randomized clinical trial. European Journal of Nutrition, 60(3), 1241-1252.
[24]Sanders, M. E. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605-616.
[25]Vogt JA, et al. (2022). Prebiotic inulin enhances butyrate-producing bacteria and reduces systemic inflammation in coronary artery disease. Gut Microbes, 14(1), 1-15.
[26]Gibson, G. R. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502.
[27]Cani, P. D. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772.
[2]Jie, Z., Xia, H., Zhong, S. L. The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 845.
[3]Tang, W. H. W., Wang, Z., Levison, B. S. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. New England Journal of Medicine, 368(17), 1575-1584.
[4]Maruvada, P., Leone, V., Kaplan, L. M., & Chang, E. B. The human microbiome and obesity: moving beyond associations. Cell Host & Microbe, 22(5), 589-599.
[5]Li, X. S., Obeid, S., Klingenberg, R. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. European Heart Journal, 38(11), 814-824.
[6]Sender, R., Fuchs, S., & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533.
[7]Qin, J., Li, R., Raes, J. A human gut microbial gene catalogue established by metagenomic sequencing. nature, 464(7285), 59-65.
[8]Lozupone, C. A., Stombaugh, J. I., Gordon, J. I. Diversity, stability and resilience of the human gut microbiota. nature, 489(7415), 220-230.
[9]Rooks, M. G., & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341-352.
[10]Canani, R. B., Costanzo, M. D., Leone, L. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17(12), 1519-1528.
[11]Round, J. L., & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences , 107(27), 12204-12209.
[12]Peterson, L. W., & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141-153.
[13]Tang, W. H. W., Kitai, T., & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circulation Research, 120(7), 1183-1196. Koeth RA, et al. Intestinal microbiota metabolism of L- carnitine promotes atherosclerosis. Nat Med. 2013;19(5):576-585.
[14]Zhu, W. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. cell, 165(1), 111-124.
[15]Vinolo, M. A. Regulation of inflammation by short chain fatty acids. Nutrients, 3(10), 858-876.
[16]Kim, C. H. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Network, 13(6), 277-283.
[17]Belkaid, Y., & Hand, T. W. Role of the microbiota in immunity and inflammation. cell, 157(1), 121-141.
[18]Tabas, I., & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. science, 339(6116), 166-172.
[19]Ridker, P. M. Antiinflammatory therapy with canakinumab for atherosclerotic disease. New England Journal of Medicine, 377(12), 1119-1131.
[20]Violi F, Cammisotto V, Bartimoccia S, Pignatelli P, Carnevale R, Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023 Jan;20(1):24-37.
[21]Wang, Z. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. nature, 472(7341), 57-63.
[22]Smith, P. M. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. science, 341(6145), 569-573.
[23]Li J. Lactobacillus plantarum reduces TMAO via modulating gut microbiota in coronary heart disease: a randomized clinical trial. European Journal of Nutrition, 60(3), 1241-1252.
[24]Sanders, M. E. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 16(10), 605-616.
[25]Vogt JA, et al. (2022). Prebiotic inulin enhances butyrate-producing bacteria and reduces systemic inflammation in coronary artery disease. Gut Microbes, 14(1), 1-15.
[26]Gibson, G. R. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502.
[27]Cani, P. D. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772.
Copyright © 2025 Liuting Chen
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
