口腔微生物齿科抗菌新技术新材料研究进展

Journal: Frontier Forum of Clinical Medicine DOI: 10.12238/ffcr.v2i2.7841

黄文旺, 何虹, 许静怡, 孙铭婕

浙江大学医学院附属口腔医院;浙江大学口腔医学院;浙江省口腔疾病临床医学研究中心;浙江省口腔生物医学研究重点实验室;浙江大学癌症研究院

Abstract

口腔微生物相关的口腔疾病是一项重要的全球性挑战。本综述叙述了过去10余年发表的控制口腔微生物相关的新抗菌方法、基于释放抗菌药物、直接接触杀灭和复合多种功能的牙科材料以及在临床实践中控制微生物的新治疗方法,包括光动力疗法和冷常压等离子体,这些方法均显示出较传统方法更有优势。但目前仍需更多的临床试验来获得更可靠的数据,用以确定最有效的抗菌解决方法和使用这些新治疗方法的最佳条件。

Keywords

口腔微生物感染;抗菌方法;光动力疗法;冷常压等离子体

Funding

(1)浙江省教育厅一般科研项目(专业学位研究生培养模式改革专项)浙江大学科研项目资助(XY2022050)A Project Supported by Scientific Research Fund of Zhejiang University;(2)院内探索课题5022270;(3)浙江省科技厅分析测试公益性项目LGC22H140001;(4)浙江大学双一流《新时代思想政治教育创新计划》2021年本科生(2-2050205-21-005);(5)浙江大学医学院教育改革课题yxyb20172030。

References

[1] Morgan-Sagastume,F.,Larsen,P.,Nielsen,J.L.&Nielsen,P.H.Characterization of the loosely attached fraction of activa ted sludge bacteria.Water Res.42,843-854(2008).
[2] Lin,N.J.Biofilm over teeth and restorations: what do we need to know? Dent.Mater.33,667-680(2017).
[3] Allaker,R.P.The use of nanoparticles to control oral biofilm formation.J.Dent.Res.89,1175-1186(2010).
[4] Cloutier,M.,Mantovani,D.& Rosei,F.Antibacterial coatin gs:challenges,perspectives,and opportunities.Trends Biotechnol.33,637-652(2015).
[5] Colton,M.B.& Ehrlich,E.Bactericidal effect obtained by addition of antibiotics to dental cements and direct filling resins.J.Am.Dent.Assoc.47,524-531(1953).
[6] Padovani,G.C.etal.Advances in dental materials through nanotechnology:facts,perspectives and toxicological aspects. Trends Biotechnol.33,621-636(2015).
[7] Melo,M.A.,Guedes,S.F.,Xu,H.H.&Rodrigues,L.K.Nanotechnology-based restorative materials for dental caries managem ent.Trends Biotechnol.31,459-467(2013).
[8] Liu,Y.etal.Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.Chem.Soc.Rev. 48,428-446(2019).
[9] Quah,S.Y.,Wu,S.,Lui,J.N.,Sum,C.P.& Tan,K.S.N-acetylcyste ine inhibits growth and eradicates biofilm of Enterococcus faecalis.J.Endod.38,81-85(2012).
[10] Jiao,Y.etal.Quaternary ammonium-based biomedical materials:state-of-the art,toxicological aspects and antimi crobial resistance. Prog. Polym.Sci.71,53-90(2017).
[11] Munozbonilla,A.,Muñoz-Bonilla,A.&Fernández-García,M.Polymeric materials with antimicrobial activity.Prog. Polym.Sci.37,281-339(2012).
[12] Beyth,N.,Yudovin-Farber,I.,Perez-Davidi, M., Domb, A. J. & Weiss, E. I. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilmstress in vivo.Proc.Natl Acad. Sci.USA107,22038-22043(2010).
[13] Imazato, S., Russell, R. R. & McCabe, J. F. Antibacterial activity of MDPB polymer incorporated in dental resin. J. Dent.23,1437-1443(1994).
[14] Xiao,Y.H.etal.Antibacterial activity and bonding abil ity of an adhesive incorporating an antibacterial monomer DMAE-CB.J.Biomed.Mater.Res.Part B 90,813-817(2009).
[15] Imazato,S.,Ma,S.,Chen,J.H.&Xu,H.H.Therapeutic polymers for dental adhesives:loading resins with bio-active compone nts.Dent.Mater.30,97-104(2014).
[16] Zhou,W.etal.Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive. Sci.Rep.6,22269(2016).
[17] Wu,T.etal.Evaluation of novel anticaries adhesive in a secondary caries animal model.Caries Res.52,14-21(2018).
[18] Silva,O.N.etal.Exploring the pharmacological potent ial of promiscuous hostdefense peptides:from natural screen ings to biotechnological applications. Front. Microbiol.2,232 (2011).
[19] Kazemzadeh-Narbat, M. et al. Antimicrobial peptides on calcium phosphatecoated titanium for the prevention of implant-associated infections. Biomaterials 31,9519-9526 (2010).
[20] Moussa,D.G.,Fok,A.& Aparicio,C. Hydrophobic and antim icrobial dentin: a peptide-based 2-tier protective system for dental resin composite restorations.Acta Biomater.88,251 -265(2019).
[21] Tiller,J.C.,Liao,C.J.,Lewis,K.& Klibanov,A. M. Designing surfaces that kill bacteria on contact.Proc.Natl Acad. Sci. USA98,5981-5985(2001).
[22] Li,F.,Weir,M.D.,Fouad,A.F.& Xu,H.H.Effect of salivary pellicle on antibacterial activity of novel antibacterial den tal adhesives using a dental plaque microcosm biofilm model. Dent. Mater.30,182-191(2014).
[23] Yu,Q.,Wu,Z.& Chen,H.Dual-function antibacterial surf aces for biomedical applications. Acta Biomater. 16, 1–13 (2015).
[24] Damm,C.,Münstedt,H.& Rosch,A.Long-term antimicrob ial polyamide 6/silver nanocomposites.J. Mater.Sci.42, 6067- 6073(2007).
[25] Zhang, K. et al. Effect of quaternary ammonium and silver nanoparticlecontaining adhesives on dentin bond stre ngth and dental plaque microcosm biofilms. Dent. Mater. 28, 842-852(2012).
[26] Cheng,L. et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosmbiofilms.J.Biomed.Mater.Res.B100,1378-1386 (2012).
[27] Feng, X. et al. Application of dental nanomaterials: potential toxicity to the central nervous system. Int. J. Nano med.10,3547-3565 (2015).
[28] Liu,Y.etal.Antibacterial and remineralizing orthodo ntic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J. Dent. 72,53-63(2018).
[29] Li,F.,Wang,P.,Weir,M.D.,Fouad, A. F. & Xu, H. H. Evaluationof antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater. 10, 2804- 2813(2014).
[30] Raab,O.Ueber die Wirkung Fluorescierenden Stoffe auf Infusorien.Z.Biol.39,524-546(1904).
[31] Al-Shammery,D.etal.Scope of antimicrobial photodyn amic therapy in orthodontics and related research: a review. Photodiagn.Photodyn. Ther.25,456-459(2019).
[32] Hu, X., Huang, Y. Y., Wang, Y., Wang, X. & Hamblin, M. R. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front. Microbiol. 9, 1299 (2018).
[33] Konopka, K. & Goslinski, T. Photodynamic therapy in dentistry.J.Dent.Res.86,694-707(2007).
[34] Wilson, M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem. Photobiol.Sci.3,412–418(2004).
[35] Reynolds, E. C. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phospha tesolutions.J.Dent.Res.76,1587-1595(1997).
[36] Müller, P., Guggenheim, B. & Schmidlin, P. R. Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro.Eur.J.Oral Sci.115,77-80(2007).
[37] Pihlstrom, B.L.,Michalowicz,B.S.& Johnson,N.W. Periodo ntal diseases. Lancet 366,1809-1820(2005).
[38] Cobb,C.M.Clinical significance of non-surgical peri odontal therapy: an evidence-based perspective of scaling and root planing.J.Clin. Periodontol.29,6-16(2002).
[39] Roca,I.etal.The global threat of antimicrobial resist ance: science for intervention. New Microbes New Infect. 6, 22-29(2015).
[40] Horev,B.etal.PH-Activated nanoparticles for controll ed topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 9,2390-2404(2015).
[41] de Oliveira, R. R. et al. Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive perio dontitis: cytokine profile in gingival crevicular fluid, preliminary results.J. Periodontol.80,98-105(2009).
[42] Xue, D. & Zhao, Y. Clinical effectiveness of adjunctive antimicrobial photodynamic therapy for residual pockets during supportive periodontal therapy: a systematic review and meta-analysis. Photodiagn. Photodyn. Ther.17,127–133(2017).
[43] Dobson, J. & Wilson, M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch.Oral Biol.37,883-887(1992).
[44] Xu, Y. et al. Endodontic antimicrobial photodynamic therapy: safety assessment in mammalian cell cultures. J. Endod.35,1567-1572(2009).
[45] Bonsor, S. J., Nichol, R., Reid, T. M. & Pearson, G. J. An alternative regimen for root canal disinfection. Br. Dent. J.201,101-105 (2006).
[46] Mizutani, K. et al. Lasers in minimally invasive periodontal and peri-implant therapy. Periodontol. 2000 71, 185-212(2016).
[47] Bliss, J. M., Bigelow, C. E., Foster, T. H. & Haidaris, C. G. Susceptibility of Candida species to photodynamic effects of photofrin. Antimicrob. Agents Chemother. 48, 2000–2006 (2004).
[48] Feng, L. et al. NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynam ic therapy.J.Mater.Chem.B 4,8000-8008(2016).
[49] Gilmore, B. F. et al. Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol. 36, 627–638(2018).
[50] Isbary, G. et al. Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Devices 10, 367–377 (2013).
[51] Bourke, P., Ziuzina, D., Han, L., Cullen, P. J. & Gilmore, B. F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 123, 308–324 (2017).
[52] Liu,Y.,Liu,Q.,Yu, Q. S. & Wang, Y. Nonthermal atmospheric plasmas in dental restoration. J. Dent. Res.95,496–505 (2016).
[53] Chavez de Paz,L.E.Redefining the persistent infecti on in root canals: possible role of biofilm communities. J. Endod.33,652–662(2007).
[54] Li, Y. et al. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faeca lis biofilm in vitro. J. Endod. 41,1325-1330 (2015).
[55] Campoccia, D., Montanaro, L. & Arciola, C. R. A review of the clinical implications of anti-infective biomaterials andinfection-resistant surfaces. Biomaterials 34, 8018-8029 (2013).
[56] Idlibi, A. N. et al. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling 29,369-379 (2013).
[57] Rupf,S.et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PLoS ONE 6, e25893 (2011).
[58] Pei, Y. et al. Biological activities and potential oral applications of n-acetylcysteine: progress and prospects. Oxid. Med. Cell. Longev. 2018, 2835787 (2018).

Copyright © 2024 黄文旺, 何虹, 许静怡, 孙铭婕

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License