单光子雪崩二极管(SPAD)的演化与创新

Journal: Engineering Technology Development DOI: 10.12238/etd.v3i4.5270

莫良华1, 王小明1, 李孝剑2, 王东生3, 杨明4

1. 深圳阜时科技有限公司
2. 深圳市大鱼智行科技有限公司
3. 深圳盈达信息科技有限公司
4. 深圳大学

Abstract

立足于单光子探测技术的硬件核心——单光子雪崩二极管,详细探讨了它的工作原理、性能参数、物理模型、器件结构。通过分析国内外学术和产业界的研究现状,把握单光子探测器件的演化过程,从底层的器件物理展开分析从而达到对该技术更为深刻而综合的理解。

Keywords

单光子;雪崩二极管;演化;创新

References

[1] Donati, Silvano, and Tiziana Tambosso. "Single-photon detectors: From traditional PMT to solid-state SPAD-based technology." IEEE Journal of Selected Topics in Quantum Electronics 20.6 (2014): 204-211.
[2] Bronzi, Danilo, et al. "Automotive three-dimensional vision through a single-photon counting SPAD camera." IEEE Transactions on Intelligent Transportation Systems 17.3 (2015): 782-795.
[3] http://www.199it.com/archives/830345.html.
[4] Natarajan, Chandra M., Michael G. Tanner, and Robert H.Hadfield. "Superconducting nanowire single-photon detectors: physics and applications." Superconductor science and technology 25.6 (2012): 063001.
[5] Smith, Devin H., et al. "Conclusive quantum steering with superconducting transition-edge sensors." Nature communications 3.1 (2012): 1-6.
[6] Natarajan, Chandra M., et al."Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths." Optics express 21.1 (2013): 893-902.
[7] Bertone, Nick, Roberto Biasi, and Bruno Dion. "Overview of photon counting detectors based on CMOS processed single photon avalanche diodes (SPAD), InGaAs APDs, and novel hybrid (tube+ APD) detectors." Semiconductor Photodetectors II. Vol. 5726. International Society for Optics and Photonics, 2005.
[8] Ghioni, Massimo, et al. "Planar silicon SPADs with 200-μm diameter and 35-ps photon timing resolution." Advanced Photon Counting Techniques. Vol. 6372. International Society for Optics and Photonics, 2006.
[9] Morimoto, Kazuhiro, et al. "Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications." Optica 7.4 (2020): 346-354.
[10] Malass, Imane, et al. "Evaluation of size influence on performance figures of a single photon avalanche diode fabricated in a 180 nm standard CMOS technology." Analog Integrated Circuits and Signal Processing 89.1 (2016): 69-76.
[11] Vignetti, M. M., et al. "Simulation study of a novel 3D SPAD pixel in an advanced FD-SOI technology." Solid-State Electronics 128 (2017): 163-171.
[12] Lindner, Scott, etal."A high-PDE, backside-illuminated SPAD in 65/40-nm 3D IC CMOS pixel with cascoded passive quenching and active recharge." IEEE Electron Device Letters 38.11 (2017) : 1547-1550.
[13] Bronzi, Danilo, et al. "SPAD figures of merit for photon-counting, photon-timing, and imaging applications: a review." IEEE Sensors Journal 16.1 (2015): 3-12.
[14] Moroshima, Heiji, Hajime Terakado, and Hideharu Fujii. "Zener diode with protective PN junction portions." U.S. Patent No. 4,484,206. 20 Nov. 1984.
[15] Leitner, Tomer, et al. "Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology." IEEE transactions on electron devices 60.6 (2013): 1982-1988.
[16] Massari, Nicola, et al. "16.3 A 16× 16 pixels SPAD-based 128-Mb/s quantum random number generator with− 74dB light rejection ratio and− 6.7 ppm/° C bias sensitivity on temperature." 2016 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2016.
[17] Henderson, Robert K., Justin Richardson, and Lindsay Grant. "Reduction of band-to-band tunneling in deep-submicron CMOS single photon avalanche photodiodes." International Image Sensor Workshop (IISW 2009), Bergen, Norway. 2009.
[18] Anti, Michele, et al. "Modeling of afterpulsing in single-photon avalanche diodes." Physics and Simulation of Optoelectronic Devices XIX. Vol. 7933. International Society for Optics and Photonics, 2011.
[19] You, Ziyang, et al. "μm pitch, 1 μm active diameter SPAD arrays in 130 nm CMOS imaging technology." Proc. IISW (3): 238-241.
[20] Palubiak, Darek P., and M. Jamal Deen. "CMOS SPADs: Design issues and research challenges for detectors, circuits, and arrays." IEEE Journal of Selected Topics in Quantum Electronics 20.6 (2014): 409-426.
[21] Richardson, Justin A., et al. "A 2um diameter, 9hz dark count, single photon avalanche diode in 130nm cmos technology." 2010 Proceedings of the European Solid State Device Research Conference. IEEE, 2010.
[22] Lu, Xin, et al. "A 4-μm Diameter SPAD Using Less-Doped N-Well Guard Ring in Baseline 65-nm CMOS." IEEE Transactions on Electron Devices 67.5 (2020): 2223-2225.
[23] Geist, Jon. "Quantum efficiency of the pn junction in silicon as an absolute radiometric standard." Applied optics 18.6 (1979): 760-762.
[24] Kuvås, R., and C. A. Lee. "Quasistatic approximation for semiconductor avalanches." Journal of Applied Physics 41.4 (1970): 1743-1755.
[25] Tan, S. L., D. S. Ong, and H. K. Yow. "Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes." Journal of Applied Physics 102.4 (2007): 044506.
[26] Inoue, Akito, et al. "Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor." Sensors 20.10 (2020): 3007.
[27] Sun, Feiyang, et al. "A Simple Analytic Modeling Method for SPAD Timing Jitter Prediction." IEEE Journal of the Electron Devices Society 7 (2019): 261-267.
[28] Han, Dong, et al. "A scalable single-photon avalanche diode with improved photon detection efficiency and dark count noise." Optik (2020): 164692.
[29] Xu, Yux, Ping Xiang, and Xiaopeng Xie. "Comprehensive understanding of dark count mechanisms of single-photon avalanche diodes fabricated in deep sub-micron CMOS technologies." Solid-State Electronics 129 (2017): 168 -174.

Copyright © 2022 莫良华, 王小明, 李孝剑, 王东生, 杨明

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License