基于改进鲸鱼优化算法的非线性方程组求解

Journal: Engineering and Management Science DOI: 10.12238/ems.v6i11.10005

李霞, 刘沫然

河北科技师范学院数学与信息科技学院

Abstract

针对鲸鱼优化算法(WOA)收敛速度慢、全局搜索能力弱的缺点,首先对WOA中的参数进行改进,然后利用樽海鞘群算法(SSA)收敛速度快的优点,将其引入到WOA中,得到改进的鲸鱼优化算法(AWOA),最后把AWOA应用到非线性方程组的求解中。结果显示,AWOA不仅提高了搜索解的个数,而且所得解平均值的误差和标准差低于WOA。因此,AWOA相较于WOA,全局搜索能力更强,求解精确更高,稳定性更佳。

Keywords

改进的鲸鱼优化算法;樽海鞘群算法;非线性方程组求解

References

[1] Dorigo M,Maniezzo V,Colomi A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society,1966,26(1):29-41.
[2] Kennedy J,Eberhart R. Particle swarm optimization[C]// IEEE International Conference on Neural Networks,1995:1942-1948.
[3] Karaboga D. An idea based on honey bee swarm for numerical optimization:technical report-TR06[R]. 2005:1-10.
[4] Mirjalili S,Lewis A. The Whale Optimization Algorithm[J].Advances in Engineering Software,2016,95:51- 67.
[5] 武泽权,牟永敏. 一种改进的鲸鱼优化算法[J].计算机应用研究,2020,37(12):3618- 3621.
[6] Mirjalili S,Gandomi A H,Mirjalili S Z,et al. Slap Swarm Algorithm:A bio-inspired optimizer for engineering design problems [J]. Advances in Engineering Software,2017,114:163-191.

Copyright © 2024 李霞, 刘沫然

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License