基于机器学习模型下智能手机APP使用情况聚类分析研究

Journal: Engineering and Management Science DOI: 10.12238/ems.v5i3.6280

王哲, 杨渠钏, 卢灏, 曾凡兆, 梁兰青

广东海洋大学

Abstract

随着智能手机普及和移动互联网发展,智能手机APP成为人们日常生活中不可或缺一部分。每天,人们使用各种不同APP来满足各种需求,如社交、娱乐、购物、工作等。分析不同群体用户特征以及通过用户APP记录预测未来是否使用APP及使用时长尤其重要。本文通过构建三种聚类模型: kmeans聚类、DBSCAN聚类、层次聚类,并通过轮廓系数、DB指数Calinski-Harabasz指数分析其聚类效果。其中kmeans效果最好,轮廓系数为0.3437,DB指数为0.811884,Calinski-Harabasz指数为58552.461。

Keywords

均值聚类;DBSCAN 聚类;分层聚类

References

[1] Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3), 160.
[2] Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review of android malware detection approaches based on machine learning. IEEE Access, 8, 124579-124607.
[3] Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method for android malware detection using various features. IEEE Transactions on Information Forensics and Security, 14(3), 773-788.
[4] Ramesh, A., Nikam, D., Balachandran, V. N., Guo, L., Wang, R., Hu, L., ... & Jia, Y. (2022). Cloud-based collaborative road-damage monitoring with deep learning and smartphones. Sustainability, 14(14), 8682.
[5] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission identification for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics, 14(7), 3216-3225.

Copyright © 2023 王哲, 杨渠钏, 卢灏, 曾凡兆, 梁兰青

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License