生物炭修复土壤有机碳矿化的温度敏感性研究进展

Journal: Ecological Environment and Protection DOI: 10.12238/eep.v8i3.2585

朱昊天, 兰国新

重庆三峡学院重庆市三峡库区水环境演变与污染防治重点实验室

Abstract

工业革命以来,人类活动导致大气二氧化碳(CO2)浓度显著上升,加剧全球气候变化。土壤作为陆地生态系统中最大的有机碳库,其碳库稳定性对调控大气CO2浓度具有关键作用。本文系统综述了土壤有机碳矿化的过程、影响因素及温度敏感性(Q10)机制,并探讨生物炭修复的调控效应。研究表明,温度、水分、pH及外源碳输入对矿化速率具有显著影响,Q10与碳质量、微生物活性及土壤理化性质密切相关。生物炭通过稳定芳香族碳组分、抑制微生物代谢活性及改变土壤团聚体结构,显著降低土壤有机碳矿化速率。其热解温度、添加量及土壤性质共同调控修复后土壤的碳矿化温度敏感性。未来需结合多因子耦合机制与智能模型优化,推动生物炭技术在固碳减排及气候智慧型农业中的应用。

Keywords

土壤有机碳矿化;温度敏感性(Q10);生物炭;碳封存

References

[1] IPCC.Climate change 2021:the physical science basis [J].Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change,2021,2:24.
[2] Friedlingstein, P.,Jones, M.W.,O'Sullivan,M.,et al.Global carbon budget 2021[J].Earth System Science Data,2022,14(4): 1917-2005.
[3] Jobbágy, E.G.,Jackson,R.B.The vertical distribution of soil organic carbon and its relation to climate and vegetati on[J].Ecological Applications,2000,10(2):423-436.
[4] Delgado-Baquerizo M,Eldridge D J,Maestre F T,et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems[J].Science Advances,2017,3(4):e1602008.
[5] 黄锦学,熊德成,刘小飞,等.增温对土壤有机碳矿化的影响研究综述[J].生态学报,2017,37(1):12-24.
[6] 周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
[7] Steiner,C.,de Arruda,M.R.,Teixeira,W.G.,et al.Soil respir ation curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers[J].Tropical Science,2007,47(4):218-230.
[8] 陈茜.玉米秸秆和生物炭对活性、惰性土壤碳库的激发效应[D].重庆三峡学院,2021.
[9] 何念鹏,刘远,徐丽,等.土壤有机质分解的温度敏感性:培养与测定模式[J].生态学报,2018,38(11):4045-4051.
[10] Mondini, C.,Sinicco,T.,Cayuela,M.L.,et al.A simple auto mated system for measuring soil respiration by gas chromatog raphy[J].Talanta,2010,81(3):849-855.
[11] Nedelec,P.,Cammas,J.P.,Thouret, V., et al. An improved infrared carbon monoxide analyser for routine measurements aboard commercial Airbus aircraft: technical validation and first scientific results of the MOZAIC III programme[J].Atmos pheric Chemistry and Physics,2003,3(5):1551-1564.
[12] Nottingham, A.T.,Meir,P.,Velasquez, E.,et al.Soil carb on loss by experimental warming in a tropical forest[J]. Natu re,2020,584(7820),234.
[13] Moyano F E,Manzoni S,Chenu C.Responses of soil heter otrophic respiration to moisture availability: An exploration of processes and models[J].Soil Biology and Biochemistry, 2013,59:72-85.
[14] Yan,Z.F.,Bond-Lamberty,B.,Todd-Brown,K.E.,et al.A mo isture function of soil heterotrophic respiration that incorp orates microscale processes[J]. Nature Communications,2018,9(1):2562.
[15] Andersson,S.,Nilsson,S.I.Influence of pH and temperat ure on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus[J].Soil Biology & Biochemistry,2001,33(9):1181-1191.
[16] Newcomb,C.J.,Qafoku, N.P.,Grate,J.W., et al. Developing a molecular picture of soil organic matter–mineral interact ions by quantifying organic–mineral binding[J]. Nature Com munications,2017,8(1):396.
[17] Kuzyakov,Y.,Friedel,J.K.,& Stahr,K.Review of mechanis ms and quantification of priming effects [J].Soil Biology & Biochemistry,2000,32(11-12),1485-1498.
[18] Davidson E A,Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J].Nature,2006,440(7081):165-173.
[19] Kirschbaum M U F.The temperature dependence of soil organic matter decomposition, and the effect of global warm ing on soil organic C storage[J].Soil Biology and Biochemis try,1995,27(6):753-760.
[20] Li,H.,Yang,S.,Semenov,M.V.,et al.Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community.Global Change Biology,2021,27(12),2763-2779.
[21] Meyer, N., Welp,G.,& Amelung, W. The Temperature Sen sitivity(Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes. Global Biogeochemical Cycles,2018,32(2),306-323.
[22] Bekku,Y.S.,Nakatsubo,T.,Kume,A.,et al.Effect of warmi ng on the temperature dependence of soil,respiration rate in arctic,temperate and tropical soils[J].Applied Soil Ecology, 2003,22(3):205-210.
[23] Zhang,Z.S.,Dong,X.J.,Xu,B.X.,et al.Soil respiration sensi tivities to water and temperature in a revegetated desert [J].Journal of Geophysical Research-Biogeo sciences,2015,120(4):773-787.
[24] Liu,Y.,He,N.,Zhu,J.,et al.Regional variation in the temp erature sensitivity of soil organic matter decomposition in China's forests and grasslands. Global Change Biology,2017,23 (8),3393-3402.
[25] Zhou,Z.Y.,Guo,C.,Meng, H. Temperature sensitivity and basal rate of soil respiration and their determinants in te mperate forests of north China[J].PLoS One,2013,8(12):e817 93.
[26] Chevallier,T.,Hmaidi,K.,Kouakoua,E.,et al.Physical prot ection of soil carbon in macroaggregates does not reduce the temperature dependence of soil CO2 emissions[J].Journal of Plant Nutrition and Soil Science,2015,178(4):592-600.
[27] Laird,D.A.,Brown,R.C.,Amonette,J.E.,et al.Review of the pyrolysis platform for coproducing bio-oil and biochar[J]. Biofuels Bioproducts & Biorefining-Biofpr,2009,3(5),547-562.
[28] 安艳.生物质炭输入对土壤团聚体分布及有机碳组分的影响[D].陕西杨凌,西北农林科技大学,2016.
[29] Luo,L.,Wang,J.,Lv,J.,et al.Carbon Sequestration Strateg ies in Soil Using Biochar: Advances, Challenges, and Opportuni ties[J].Environmental Science & Technology,2023,57(31),11357 -11372.
[30] Xia,L.,Cao,L.,Yang,Y.,et al.Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food,2023,4(3),236-246.
[31] 王程.玉米秸秆生物炭对东北地区典型土壤温室气体排放的影响[D].沈阳大学,2024.
[32] Obia A, Mulder J, Martinsen V,et al.In situ effects of biochar on aggregation, water retention and porosity in light -textured tropical soils[J].Soil and Tillage Research,2016,155:35-44.
[33] Zheng H,Wang X,Luo X,et al.Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation[J]. Science of the Total Environment,2018,610:951-960.
[34] Ameloot N,Sleutel S,Case S D C,et al.C mineralization and microbial activity in four biocharfield experiments sev eral years after incorporation[J].Soil Biology and Biochemis try,2014,78:195-203.
[35] 高佳,王姣,王松,等.生物炭基肥对马铃薯田土壤脲酶活性和产量的影响[J].作物杂志,2021,(06):134-138.
[36] 江明华,程建中,李心清,等.生物炭对农田土壤CO2排放的影响研究进展[J].地球与环境,2021,49(06):726-736.
[37] Shah,T.,Tariq,M.,& Muhammad,D.Biochar Application Im proves Soil Respiration and Nitrogen Mineralization in Alka line Calcareous Soil under Two Cropping Systems[J].Sarhad Jou rnal of Agriculture,2021,37(2),500-510.
[38] Mohan,D.,Abhishek,K.,Sarswat,A.,et al.Biochar producti on and applications in soil fertility and carbon sequestration -a sustainable solution to crop-residue burning in India [J].Rsc Advances,2018,8(1),508-520.
[39] Zhou,J.,Zhang,S.,Lv,J. et al.Maize straw increases while its biochar decreases native organic carbon mineralization in a subtropical forest soil[J].Science of the Total Environme nt,2024,939,Article 173606.
[40] Bamminger,C.,Poll,C.,& Marhan,S.Offsetting global war ming-induced elevated greenhouse gas emissions from an arable soil by biochar application[J].Global Change Biology, 2018,24(1),E318-E334.
[41] Chen,Q.,Tao, B.,Jiang, Y. Combined effects of biochar addition with varied particle size and temperature on the decomposition of soil organic carbon in a temperate forest, China[J].Soil Science and Plant Nutrition,2023,69(1),45-53.
[42] Rittl,T.F.,Canisares,L.,Sagrilo,E.,et al.Temperature se nsitivity of soil organic matter decomposition varies with biochar application and soil type[J].Pedosphere,2020,30(3),336-342.
[43] Chen,G.,Fang,Y.,Van Zwieten,L.,et al.Priming, stabiliza tion and temperature sensitivity of native SOC is controlled by microbial responses and physicochemical properties of biochar[J].Soil Biology & Biochemistry,2021,154, Article108139.
[44] Ippolito,J.A.,Cui,L.,Kammann,C.,et al. Feedstock choice, pyrolysis temperature and type influence biochar characteri stics: a comprehensive meta-data analysis review[J].Biochar, 2020,2(4),421-438.
[45] Pei,J.,Zhuang,S.,Cui,J.,et al.Biochar decreased the tem perature sensitivity of soil carbon decomposition in a paddy field[J].Agriculture Ecosystems & Environment,2017,249,156-164.
[46] Liao,X.,Kang,H.,Haidar,G.,et al.The impact of biochar on the activities of soil nutrients acquisition enzymes is potentially controlled by the pyrolysis temperature:A meta -analysis[J].Geoderma, 2022,411,Article 115692.
[47] Crombie,K.,Masek,O.,Cross,A.,et al.Biochar-synergies and trade-offs between soil enhancing properties and C sequestra tion potential[J].Global Change Biology Bioenergy,2015,7(5),1161-1175.
[48] Shrivastava, P.,Kumar,A.,Tekasakul, P.,et al.Comparative Investigation of Yield and Quality of Bio-Oil and Biochar from Pyrolysis of Woody and Non-Woody Biomasses[J].Energies,2021,14(4),Article1092.
[49] Suliman,W.,Harsh,J.B.,Abu-Lail,N.I.,et al.Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J].Biomass & Bioenergy,2016,84,37-48.
[50] Murtaza,G.,Usman,M.,Iqbal,J.,et al.Liming potential and characteristics of biochar produced from woody and non-woo dy biomass at different pyrolysis temperatures[J].Scientific Reports,2024,14(1),Article11469.
[51] Wang,D.,Fonte,S.J.,Parikh,S.J.,et al.Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J].Geoderma,2017,303,110-117.
[52] Zhu,X.,Chen,B.,Zhu,L.,et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollu tion remediation: A review[J].Environmental Pollution,2017,227,98-115.
[53] Huang,X.,Cui,C.,Hou,E.,et al. Acidification of soil due to forestation at the global scale[J].Forest Ecology and Mana gement,2022,505,Article119951.
[54] Chen,G.,Wang,X.,& Zhang,R.Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes[J].Soil & Tillage Research,2019,186,322-332.
[55] Nogués,I.,Mazzurco Miritana,V.,Passatore, L., Zacchini, M.,Peruzzi,E.,Carloni,S.,Pietrini,F.,Marabottini,R.,Chiti,T.,Massaccesi,L.,& Marinari,S.(2023).Biochar soil amendment as carbon farming practice in a Mediterranean environment. Geoderma Regional,33,e00634.
[56] Briones,M.J.I.,McNamara,N.P.,Poskitt,J.,Crow,S.E.,&Ostle,N.J.(2014).Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Global Change Biology,20(9),2971-2982.
[57] Qin,S.,Chen,L.,Fang,K.,Zhang,Q.,Wang,J.,Liu,F.,Yu,J.,&Yang,Y.(2019).Temperature sensitivity of SOM decomposition gov erned by aggregate protection and microbial communities.Science Advances,5(7),Article eaau1218.

Copyright © 2025 朱昊天, 兰国新

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License