树脂基微生物载体强化硫自养反硝化脱氮效果研究

Journal: Ecological Environment and Protection DOI: 10.12238/eep.v8i3.2572

季思睿1, 金俊霏1, 黄前霖2, 吕路2

1. 南京大学 环境学院 污染控制与资源化研究国家重点实验室
2. 南京大学 环境学院 污染控制与资源化研究国家重点实验室 ; 南京大学常高新国际环保产业技术研究院

Abstract

本文提出了一种基于树脂基微生物载体强化硫自养反硝化脱氮效果的方法,探究了树脂骨架结构和官能团类型对树脂基微生物载体-自养反硝化体系脱氮效果的影响规律。结果表明,具有聚丙烯酸骨架和季铵基的D730树脂相较于聚苯乙烯骨架和叔胺基表现出更强的正电性,有助于通过静电相互作用吸附硝酸盐氮(NO3--N)和硫代硫酸根(S2O32-)。同时微生物群落分析表明,树脂基微生物载体提高了体系中Thiobacillus属的相对丰度,尤其在D730树脂体系下,其相对丰度高达44.64%,这种微生物群落的变化很可能是Bio-D730体系脱氮性能显著提升的关键原因,导致D730树脂基微生物载体强化硫自养反硝化呈现出最佳的脱氮性能。总之,本文为基于树脂基微生物载体-硫自养反硝化体系高效处理低浓度NO3--N提供技术支撑和理论参考,在污水处理厂二级出水深度脱氮中具有良好的应用前景。

Keywords

硫自养反硝化;微生物载体;生物脱氮;污水处理;菌群分析

References

[1] Pang Y.,Hu L.,Wang J. Mixotrophic denitrification using pyrite and biodegradable polymer composite as electron dono rs[J].Bioresource Technology,2022,351:127011.
[2] Zhang H.,Sun M.,Tian J.,et al. Synergetic effects of pyrrhotite and biochar on simultaneous removal of nitrate and phosphate in autotrophic denitrification system[J].Water En vironment Research,2023,95(4):1-14.
[3] Ji B.,Jiang M.,Yang Y.,et al.High treatment effectiven ess for secondary effluent in Fe-C microelectrolysis constru cted wetlands with electron donor supplementation[J].Journal of Cleaner Production,2022,342:130934.
[4] Zhou Q.,Sun H.,Jia L.,et al.Simultaneous biological rem oval of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review [J].Chemosphere,2022,296:134054.
[5] 刘蕊,施海仁,常丽如,等.硫基自养反硝化处理市政污水的性能研究[J].环境化学,2024,(44):1-14.
[6] Wang J.,Huang B.,Li J.,et al.Advances and challenges of sulfur-driven autotrophic denitrification(SDAD) for nitrogen removal[J].Chinese Chemical Letters,2020,31(10):2567-2574.
[7] 路青,刘宏雁,郑博英,等.硫自养反硝化的污水脱氮技术研究[J].环境工程,2023,(41):60-64.
[8] Li L.,He Z.,Liang T.,et al.Colonization of biofilm in was tewater treatment: A review[J].Environmental Pollution, 2022, 293:118514.
[9] Chen X.,Yang L.,Chen F.,et al.High efficient bio-denitri fication of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor[J]. Bioresource Technology,2022,346:126669.
[10] Wang Y.,Liang B.,Kang F.,et al.An efficient anoxic/aer obic/aerobic/anoxic process for domestic sewage treatment: From feasibility to application[J].Frontiers in Microbiology,2022,13:1-12.
[11] Kang S.,Vo T.,An S.,et al.Investigating the effects of physical properties of sulphur-based carriers on autotrophic denitrification[J].Environmental Technology,2023,44(1):108-117.
[12] Korak J.A.,Mungan A. L.,Watts L.T.Critical review of waste brine management strategies for drinking water trea tment using strong base ion exchange[J].Journal of Hazardous Materials,2023,441:129473.
[13] Xu S.,Yan Y.,Shuang C.,et al.Biological magnetic ion ex change resin on advanced treatment of synthetic wastewater [J].Bioresource Technology,2023,372:128613.
[14] Kumar E.,Bhatnagar A.,Hogland W.,et al.Interaction of inorganic anions with iron-mineral adsorbents in aqueous media-A review[J].Advances in Colloid and Interface Science,2014,203:11-21.
[15] Tansel B Significance of thermodynamic and physical characteristics on permeation of ions during membrane sepa ration: Hydrated radius, hydration free energy and viscous effects[J].Separation and Purification Technology,2012,86:119-126.
[16] Huang S.,Yu D.,Chen G.,et al.Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal[J].Chemosph ere,2021,278:130413.
[17] Zimmermann K.,Sampara P.,Ziels R.,et al. Biological contributions to biological ion exchange[J].Environmental Science Water Research & Technology,2024,10(4):877-888.
[18] 高凯燕,王羽洁,韩立秦,等.生物离子交换工艺在水处理中的应用[J].离子交换与吸附,2024,40(6):441-449.
[19] Zhao Y.,Liu D.,Huang W.,et al.Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art,challenges, and opportunities[J]. Bioresource Technology,2019,288:121619-121633.
[20] Ivanov I.,Vemparala S.,Pophristic V.,et al.Characteriza tion of nonbiological antimicrobial polymers in aqueous solu tion and at water-lipid interfaces from all-atom molecular dynamics[J].Journal of the American Chemical Society,2006,128(6):1778-1779.
[21] Asri L.A.T.W.,Crismaru M.,Roest S.,et al.A shape-adapt ive,antibacterial-coating of immobilized quaternary-ammoni um compounds tethered on hyperbranched polyurea and its mechanism of action[J]. Advanced Functional Materials,2013,24(3):346-355.
[22] 刘明华.水处理化学品手册[M].第1版.北京:化学工业出版社,2016:833.
[23] Gilbert P.,Moore L.E.Cationic antiseptics: Diversity of action under a common epithet[J].Journal of Applied Micro biology,2005,99(4):703-715.
[24] Jiménez-Munguía Irene,Volynsky P.E.,Batishchev O.V.,et al.Effects of sterols on the interaction of SDS,benzalkon ium chloride, and a novel compound, Kor105, with membranes[J].Biomolecules,2019,9(627):1-21.
[25] Pharand L.,Van M.,Anderson W.B.,et al.Assessment of biomass in drinking water biofilters by adenosine triphosphate [J].Journal American Water Works Association,2014,106(10):433-444.
[26] Wang Y.,Bott C.,Nerenberg R.Sulfur-based denitrifica tion:Effect of biofilm development on denitrification fluxes [J].Water Research,2016,100:184-193.
[27] Zhang Y.,Fang F.,Qian X.,et al.Semiconductor biohybri ds for enhanced bifunctional wastewater sulfur and heavy metal removal[J].Green Chemistry,2024,26(7):3940-3948.

Copyright © 2025 季思睿, 金俊霏, 黄前霖, 吕路

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License