微生物修复水体重金属技术研究进展

Journal: Ecological Environment and Protection DOI: 10.12238/eep.v7i4.2046

蒋梦雨1, 冯英杰2, 杨多江2, 刘少敏1

1. 安徽理工大学地球与环境学院
2. 淮河能源集团张集煤矿

Abstract

随着我国工业化飞速进步与发展,河湖水体重金属污染越来越严重,如何高效处理含有重金属污染的水体,已成为当前重要研究内容,生物修复水体重金属污染因高效、低成本和环保等优点逐渐走进人们的视野。该文对重金属污染的生物修复处理技术原理进行了简单的论述,分析了微生物法治理的作用以及新兴的一种微藻-真菌/细菌共生系统,扩展了对整体生物学方法和重金属污染后果的未来进展的分析。

Keywords

微生物;重金属;修复技术;共生系统

References

[1] Anser,M. K.; Hanif, I.; Vo, X. V.; Alharthi, M. The long-runand short-run influence of environmental pollution, energy consumption,and economic activities on health quality in eme rging countries.Environmental Science and Pollution Research 2020,27(26),32518-32532.
[2] Briffa,J.;Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020,6(9),e04691.
[3] Kapahi,M.;Sachdeva,S. Bioremediation Options for Heavy Metal Pollution. Journal of Health and Pollution 2019, 9 (24), 191203.
[4] Zhao,M.;Zhang, X.; Zhang, M.; Guo, J.; Zhang, J.; Zheng, G.;Feng,B.;Chen,Y.Bacterial and microalgal co-fixation for remed iation of industrial wastewater contaminated with arsenic, me rcury,and other pollutants. Journal of Environmental Chemical Engineering2024,113099.
[5] Razzak,S.A.;Faruque,M. O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S. M. Z.; Hossain, M. M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmen tal Advances 2022,7,100168.
[6] Ajiboye,T.O.;Kuvarega,A.T.;Onwudiwe,D.C.Recent Strateg ies for Environmental Remediation of Organochlorine Pesticid es.In Applied Sciences,2020; Vol.10.
[7] Sharma,B.;Shukla,P.A comparative analysis of heavy met al bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermed ium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresource Tech nology 2021,320,124330.
[8] 王兴利.水生植物生态修复重金属污染水体研究进展.环境污染与防治2020,42(1):6.
[9] 焦迎迎,闫斐,吕淑华.微生物在重金属污染土壤修复中的作用[J].皮革制作与环保科技,2022,3(9):105-107.
[10] 李司宇,刘雪,王文婧.微生物在重金属离子污染修复及治理中的应用研究[J].环境与可持续发展,2020,45(2):158-160.
[11] 詹敬江.微生物修复技术在重金属污染治理中的应用研究[J].资源节约与环保,2017,(3):22,24.
[12] Medfu Tarekegn, M.; Zewdu Salilih, F.; Ishetu, A. I. Mi crobes used as a tool for bioremediation of heavy metal from the environment.Cogent Food & Agriculture 2020,6.
[13] 刘晓.微生物技术在重金属污染土壤修复中的应用研究[J].现代农业研究,2022,28(6):25-27.
[14] Ray,S.; Vashishth, R. From water to plate: Reviewing the bioaccumulation of heavy metals in fish and unraveling human health risks in the food chain. Emerging Contaminants 2024,10(4),100358.
[15] Kisielowska,E.;Holda,A.A.; Niedoba, T. Removal of heavy metals from coal medium with application of biotechnological methods.2010.
[16] Ummalyma,S.B.;Singh,A.Importance of algae and bacte ria in the bioremediation of heavy metals from wastewater tr eatment plants.2021.
[17] Sanglier,J.J.;Haag,H.;Huck,T.A.;Fehr, T. Novel bioactive compounds from Actinomycetes: a short review (1988-1992). Res Microbiol1993,144(8),633-642.
[18] Locatelli, F. M.; Goo, K. S.; Ulanova, D. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics:integrated biom etal science2016,85,469-480.
[19] Bérdy,J. Bioactive Microbial Metabolites. The Journal of Antibiotics 2005,58(1):1-26.
[20] Abbas,A.S.;Edwards,C. Effects of Metals on a Range of Streptomyces Species. Applied and Environmental Microbiolo gy 1989,55,2030-2035.
[21] Wang,J.;Chen,R.; Fan, L.; Cui, L.; Zhang, Y.; Cheng, J.; Wu, X.; Zeng, W.; Tian, Q.; Shen, L. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Separation and Purification Technology 2021,268,118689.
[22] Mosa,K.;Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O. P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids.Frontiers in Plant Science 2016,7.
[23] Sannasi, P.; Kader, J.; Othman, O. M.; Salmijah, S. Single and Multi‐Metal Removal by an Environmental Mixed Bacterial Isolate.2008.
[24] Chaturvedi,M.Studies on Chromate Removal by Chromi um-Resistant Bacillus sp. Isolated from Tannery Effluent. Journal of Environmental Protection 2011,2,76-82.
[25] Zhao, W.-W.; Zhu, G.; Daugulis, A. J.; Chen, Q.; Ma, H.-Y.;Zheng, P.; Liang, J.; Ma, X.-k. Removal and biomineralization of Pb2+ in water by fungus Phanerochaete chrysoporium. Journal of Cleaner Production 2020,260,120980.
[26] Anerao, P.; Kumar, H.; Kaware, R.; Prasad, K.; Kumar, M.; Singh,L.Algal-Based Biofuel Production: Opportunities, Chall enges, and Prospects. In Bio-Clean Energy Technologies: Volu me 1,Chowdhary,P.,Khanna,N., Pandit, S., Kumar, R. Eds.; Springer Nature Singapore,2022;pp155-180.
[27] Guo,G.; Cao, W.; Sun, S.; Zhao, Y.; Hu, C. Nutrient removaland biogas upgrading by integrating fungal–microalgal cult ivation with anaerobically digested swine wastewater treat ment.Journal of Applied Phycology 2017,29 (6),2857-2866.
[28] Bodin, H.; Asp, H.; Hultberg, M. Effects of biopellets composed of microalgae and fungi on cadmium present at envi ronmentally relevant levels in water. International Journal of Phytoremediation2017,19,500-504.
[29] Qian, X.; Fang, C.; Huang, M.; Achal, V. Characterization of fungal-mediated carbonate precipitation in the biominer alization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production 2017,164,198-208.
[30] Park,D.;Yun,Y.S.;Jo,J.H.;Park,J.M.Mechanism of hexavale nt chromium removal by dead fungal biomass of Aspergillus ni ger.Water research 2005,394,533-540.
[31] Cui, L.; Fan, L.; Li, Z.; Wang, J.; Chen, R.; Zhang, Y.; Cheng, J.; Wu, X.; Li, J.; Yin, H.; et al. Characterization of extracellular polymeric substances from Synechocystis sp. PCC6803 under Cd (II),Pb(II) and Cr (VI) stress. Journal of Environmental Chemical Engineering 2021,9(4),105347.
[32] Rizwan, M.; Mujtaba, G.; Memon, S. A.; Lee, K.; Rashid, N.Exploring the potential of microalgae for new biotechnolo gy applications and beyond: A review. Renewable and Sustai nable Energy Reviews 2018,92,394-404.
[33] Li,L.;Liu,W.;Liang,T.; Ma, F. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process. Bioresource Technology 2020,315,123854.
[34] Li,L.-b.;Liu, B.-l.;Liu, W.-l.; Chiu, Y.-H. Efficiency evaluation of the regional high-tech industry in China: A new framework based on meta-frontier dynamic DEA analysis. Socio-Economic Planning Sciences 2017,60,24-33.
[35] Leihui,X.;Qiaoyun,H.;Wenli,C. Bacterial bioremediation and bio--detection of heavy metal--contaminated environme nts. Chinese Journal of Appplied Environmental Biology 2004, 10,256-262.
[36] Ren, Y.; Hao Ngo, H.; Guo, W.; Wang, D.; Peng, L.; Ni, B.-J.;Wei, W.; Liu, Y. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatme nt systems. Bioresource Technology2020,297,122491.
[37] Wang, Y.; Wang, H.; Wang, X.; Xiao, Y.; Zhou, Y.; Su, X.; Cai, J.;Sun,F.Resuscitation, isolation and immobilization of bact erial species for efficient textile wastewater treatment: A critical review and update. Science of The Total Environment 2020,730,139034.
[38] Ramanan, R.; Kim, B.; Cho, D. H.; Oh, H.-M.; Kim, H.-S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnology advances 2016,341,14-29.
[39] Amin, S. A.; Parker, M. S.; Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 2012, 76 (3),667-684.
[40] Zhang, B.; Li, W.; Guo, Y.; Zhang, Z.; Shi, W.; Cui, F.; Lens, P.N.L.;Tay,J.H.Microalgal-bacterial consortia: From interspeci es interactions to biotechnological applications. Renewable and Sustainable Energy Reviews 2020,118,109563.
[41] Ferrier,M.D.;Martin,J.L.;Rooney-Varga,J.N.Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy.Journal of Applied Microbiology 2002,92.
[42] Mugnai,S.; Derossi, N.; Hendlin, Y. Algae communication, conspecific and interspecific: the concepts of phycosphere and algal-bacteria consortia in a photobioreactor (PBR). Plant Signaling & Behavior 2023,18.
[43] Sun, R.; Sun, P.; Zhang, J.; Esquivel-Elizondo, S.; Wu, Y. Microorganisms-based methods for harmful algal blooms control: A review. Bioresource Technology 2018, 248,12-20.
[44] Shi,J.;Zheng,M.;Zhang,Z.;Han,H.;Xu,C.Enhanced biodegra dation of quinoline and indole with a novel symbiotic system of Polyurethane-chlorella-bacteria. Journal of Water Process Engineering 2020,37,101525.

Copyright © 2024 蒋梦雨, 冯英杰, 杨多江, 刘少敏

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License