提高电活性微生物电子传递效率的综述

Journal: Ecological Environment and Protection DOI: 10.12238/eep.v7i3.1963

李季, 麦智源, 翟怡宁, 曹浩然, 穆雨彤, 王素蕾

黑龙江大学 建筑工程学院

Abstract

电活性微生物胞外电子传递被广泛应用于微生物电化学、生物技术、能量回收和环境修复,但是其低电子转移率严重限制其应用及发展,因此,本文综述了近年来关于提高电活性微生物胞外电子传递能力的相关工作,并针对不同电子传递机制,为提高电活性微生物的胞外电子传递效率提供了多角度的解决办法。主要包括:提高电活性微生物细胞色素浓度增强跨膜电子传递、促进电子穿梭体合成和传递以及调节电活性生物膜。最后,本文提出了现阶段研究中存在的问题及未来发展方向。

Keywords

电活性微生物;胞外电子传递;细胞色素;电子穿梭体;电活性生物膜

References

[1] Potter, M.C.,1911.Electrical effects accompanying the decomposition of organic compounds. Proc.Royal Soc. Lond.Ser. B,Biol.Sci.(1934-1990)84,260–276.
[2] Koch,C.,Harnisch,F.,2016a.Is there a specific ecological niche for electroactive microorganisms?ChemElectroChem3(9),1282-1295.
[3] Logan,B.E.,Rossi,R.,Ragab,A.a.,Saikaly,P.E.,2019.Electroactive microorganisms in bioelectrochemical systems. Nat. Rew. Microbiol.17(5),307-319.
[4] Rabaey,K.,Rozendal,R.A.,2010.Microbial electrosynthesis -revisiting the electrical route for microbial production. Nat.Rev.Microbiol.8(10),706-716.
[5] Liu, X.-W.,Li,W.-W.,Yu,H.-Q.,2014. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastew ater.Chem.Soc.Rev.43(22),7718-7745.
[6] Derek R. Lovley and Dawn E. Holmes.Protein Nanowires: The Electrification of the Microbial World and Maybe Our Own [J].Journal of bacteriology.2020.
[7] Multifunctional Protein Nanowire Humidity Sensors for Green Wearable Electronics[J]. Advanced Electronic Materi als,2020.
[8] Sun Y L,Tang H Y,Ribbe A ,et al.Conductive Composite Materials Fabricated from Microbially Produced Protein Nan owires[J]. Small,2018,14.
[9] Nevin K P,Lovley D R.Mechanisms for accessing insolub le Fe(Ⅲ ) oxide during dissimilatory Fe(Ⅲ ) reduction by Geothrix fer-mentans[J].Appl Environ Microbiol,2002,68.(5):2294-9.
[10] Hernandez,M.E.,Kappler,A.,Newman,D.K.,2004.Phenazines and other redox-active antibiotics promote microbial min eral reduction. Appl. Environ. Microbiol.70(2),921-928.
[11] Saito, J., Hashimoto,K., Okamoto, A., 2016. Flavin as an indicator of the rate-limiting factor for microbial current production in Shewanella oneidensis MR-1.Electrochim. Acta 216,261–265.
[12] Aryal, N.,Ammam,F.,Patil,S.A.,Pant, D.,2017.An overview of cathode materials for microbial electrosynthesis of chem icals from carbon dioxide. Green Chem.19(24),5748–5760.
[13] Kees, E.D., Pendleton, A.R., Paquete, C.M., Arriola, M.B., Kane,A.L.,Kotloski,N.J.,Intile, P.J., Gralnick,J.A.,2019. Secreted flavin cofactors for anaerobic respiration of fumarate and urocanate by Shewanella oneidensis:cost and role.Appl.Environ. Microbiol.85(16)(e00852-00819).
[14] Shrestha,P.M.,Rotaru,A.-E.,2014. Plugging in or going wireless: strategies for interspecies electron transfer. Front.Microbiol.5,237.
[15] Vellingiri,A.,Song, Y.E., Munussami, G., Kim, C., Park, C.,Jeon,B.-H.,Lee, S.-G., Kim, J. R.,2019.Overexpression of c-typecytochrome,CymA in Shewanella oneidensis MR-1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell.J.Chem.Technol. Biotechnol.94(7),2115-2122.
[16] Wu, Z., Wang, J., Liu, J., Wang, Y., Bi, C., Zhang, X., 2019a. Engineering an electroactive Escherichia coli for the micro bial electrosynthesis of succinate from glucose and CO2. Mic rob.Cell Factories18(1),15.
[17] Velasquez-Orta, S.B., Head, I.M., Curtis, T.P., Scott, K., Lloyd,J.R.,von Canstein, H., 2010. The effect of flavin electron shuttles in microbial fuel cells current production.Appl. Micr obiol.Biotechnol.85(5),1373–1381.
[18] Yong, X.-Y., Shi, D.-Y., Chen, Y.-L.,Jiao, F., Lin, X., Zhou, J.,Wang,S.-Y.,Yong,Y.-C.,Sun,Y.-M.,OuYang,P.-K.,Zheng,T.,2014.Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour.Technol.152,220-224.

Copyright © 2024 李季, 麦智源, 翟怡宁, 曹浩然, 穆雨彤, 王素蕾

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License