耐碳青霉烯类肺炎克雷伯杆菌的耐药机制研究

Journal: Basic Medical Theory Research DOI: 10.12238/bmtr.v7i1.11853

张诗萌, 谢守军

承德医学院附属医院检验科

Abstract

肺炎克雷伯杆菌(Klebsiella pneumoniae)作为重要的致病菌之一,其耐碳青霉烯类抗生素的显著增加,已成为全球公共卫生的重大挑战。近年来,关于肺炎克雷伯杆菌耐药机制的研究逐渐深入,涉及多种生物学机制和基因突变。当前的研究显示,耐药机制主要包括β-内酰胺酶的产生、细胞膜通透性改变以及抗性基因的传播等。这些机制的复杂性以及其在不同菌株中的变异性,使得对抗耐药肺炎克雷伯杆菌的治疗变得愈加困难。因此,深入理解其耐药机制,不仅对临床治疗策略的制定至关重要,也为未来新型抗生素的研发提供了重要的基础。本综述旨在系统探讨耐碳青霉烯类肺炎克雷伯杆菌的主要耐药机制,以期为相关研究和临床实践提供参考。

Keywords

肺炎克雷伯杆菌;碳青霉烯类抗生素;耐药机制;β-内酰胺酶

References

[1] Yang C, Lou W, Zhong G, et al. Degradable antimicrobial polycarbonates with unexpected activity and selectivity for treating multidrug-resistant Klebsiella pneumoniae lung infection in mice.Acta Biomater.2019;94:268-280.
[2] Wei X,Li Q,He Y,Li L, Li S, Li T. Molecular characteristics and antimicrobial resistance profiles of Carbapenem-Resist ant Klebsiella pneumoniae isolates at a tertiary hospital in Nanning, China. BMC Microbiol.2023;23(1):318.
[3] Kaye KS, Gupta V, Mulgirigama A, et al. Prevalence, regional distribution, and trends of antimicrobial resistance among female outpatients with urine Klebsiella spp. isolates: a multicenter evaluation in the United States between 2011 and 2019.Antimicrob Resist Infect Control.2024;13(1):21.
[4] Li Y, Xie C, Zhang Z, et al. Molecular epidemiology and antimicrobial resistance profiles of Klebsiella pneumoni ae isolates from hospitalized patients in different regions of China. Front Cell Infect Microbiol.2024;14:1380678.
[5] Jalde SS, Choi HK. Recent advances in the development of β-lactamase inhibitors.J Microbiol.2020;58(8):633-647.
[6] Li X, Zhao J,Zhang B,et al. Drug development concerning metallo-β-lactamases in gram-negative bacteria.Front Micr obiol.2022;13:959107.
[7] Tian L,Li Q,Cai X,Wang Y,Wang Y,Mao Y.Dynamic distribut ion and potential transmission of antibiotic resistance genes in activated sludge. Appl Microbiol Biotechnol. 2022;106(19-20):6785-6797.
[8] Mlynarcik P, Dolejska M, Vagnerova I, Kutilová I, Kolar M. Detection of clinically important β-lactamases by using PCR.FEMS Microbiol Lett. 2021;368(11):fnab068.
[9] Yu E, Xu YJ, Li M, et al. HIV-1 Subtype Diversity and Factors Affecting Drug Resistance among Patients with Virologic Failure in Antiretroviral Therapy in Hainan Province, China, 2014-2020.Biomed Environ Sci.2023;36(9):800-813.
[10] Dehinwal R,Gopinath T, Smith RD, et al. A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production.Nat Commun.2024;15(1):6958.
[11] Herrera CM,Voss BJ,Trent MS.Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress.mBio.2021;12(4):e0129521.
[12] Huang YE, Zhou S, Liu H, et al. DRdriver: identifying drug resistance driver genes using individual-specific gene regulatory network. Brief Bioinform.2023;24(2):bbad066.
[13] Farzaneh S, Norouzi F, Fazeli H, Salehi M, Safari M, Nasr Esfahani B. Novel mutation in efflux pump Rv1258c (Tap)gene in drug resistant clinical isolates of Mycobacterium tuberculosis in Iran.J Infect Dev Ctries.2024;18(2):243-250.
[14] Bian CR, Li JJ, Song YW, et al. Zhonghua Yu Fang Yi Xue Za Zhi.2023;57(6):868-876.
[15] Patro ARK. Subversion of Immune Response by Human Cytomegalovirus.Front Immunol.2019;10:1155.
[16] Koyanagi N,Kawaguchi Y. Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses.Viruses.2020;12(12): 1354.
[17] Sakoguchi A, Arase H. Mechanisms for Host Immune Evasion Mediated by Plasmodium falciparum-Infected Erythrocyte Surface Antigens.Front Immunol. 2022;13:901864.

Copyright © 2025 张诗萌, 谢守军

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License