影像组学及深度学习在预测胃癌淋巴结转移中的研究进展

Journal: Basic Medical Theory Research DOI: 10.12238/bmtr.v7i1.11794

赵彬, 刘靖琳, 许双燕, 曹振东

承德医学院附属医院

Abstract

胃癌是最常见的恶性肿瘤之一,淋巴结状态对于胃癌临床分期、治疗决策及预后起着重要作用。术前评估淋巴结状态对临床治疗决策至关重要,影像组学和深度学习技术通过高通量地提取影像组学特征来预测肿瘤的生物学行为,具有可重复性、无创性及客观性等特点,现已广泛应用于胃癌诊断、淋巴结转移及预后评估等方面。本文基于CT、MRI及PET/CT的影像组学和深度学习技术在预测胃癌淋巴结转移中的研究进展予以综述,以期为临床个体化精准医疗提供新思路。

Keywords

胃癌;淋巴结;影像组学;深度学习

References

[1] Bray F,Laversanne M, Sung H,et al.Global cancer statist ics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a cancer journal for clinicians,2024,74(3):229-263.
[2] Huang K H,Lan Y T,Fang W L,et al.The correlation betw een miRNA and lymph node metastasis in gastric cancer[J]. BioMed researchinternational,2015,2015(1):543163.
[3] Kitagawa Y, Takeuchi H, Takagi Y, et al. Sentinel node mapping for gastric cancer: a prospective multicenter trial in Japan[J].Journal of clinical oncology,2013,31(29):3704- 3710.
[4] Kim H J, Kim A Y, Oh S T, et al. Gastric cancer staging at multi–detector row CT gastrography: comparison of trans verse and volumetric CT scanning[J].Radiology,2005,236(3):879-885.
[5] Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European journal of cancer, 2012, 48(4):441-446.
[6] Larue R T H M, Defraene G, De Ruysscher D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J]. The British journal of radiology,2017,90(1070):20160665.
[7] 史张,刘崎.影像组学技术方法的研究及挑战[J].放射学实践,2018,33(6):633-6.
[8] 姚琼,王觅也,师庆科,等.深度学习在现代医疗领域中的应用[J].计算机系统应用,2022,31(04):33-46.
[9] Wang Y, Liu W, Yu Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J].European radiology,2020,30:976-986.
[10] Wang X, Li C, Fang M, et al. Integrating No. 3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer[J].BMC medical imaging, 2021,21:1-10.
[11] 王睿,李靖,方梦捷,等.基于能谱CT的影像组学术前预测进展期胃癌淋巴结转移的价值[J].中华医学杂志,2020,1(21):1617-1622.
[12] Dong D, Fang M J, Tang L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study[J]. Annals of oncology,2020,31(7):912-920.
[13] Xue X,Yu W J,Shi X,et al.18F-FDG PET/CT-based radiom ics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. Frontiers in Oncology, 2022,12:911168.
[14] Chen W, Wang S, Dong D, et al. Evaluation of lymph node metastasis in advanced gastric cancer using magnetic resona nce imaging-based radiomics[J].Frontiers in oncology,2019,9: 1265.

Copyright © 2025 赵彬, 刘靖琳, 许双燕, 曹振东

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License