影像组学在胰腺癌术前评估中的研究进展
Journal: Basic Medical Theory Research DOI: 10.12238/bmtr.v6i5.10099
Abstract
胰腺癌是高度恶性的消化系统肿瘤,5年生存率仅12%,胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)为其主要病理类型。近80%的病人在初次诊断时已形成局部或远处转移,这也将导致其预后更差[1,2]。中国国家癌症中心最新发布的数据显示,每年因癌症死亡的患者中胰腺癌的总数量位居第6[3]。目前胰腺癌根治的主要手段是以手术为主的综合治疗,术前准确地评估肿瘤病灶与毗邻血管、组织和器官的位置关系和隐匿性转移尤为重要,以此制定个体化手术方案提高肿瘤R0切除率以期获得更好的预后。影像学检查(CT、MRI等)作为最常见的检查手段在胰腺癌术前评估中不可或缺,并且在临床上较易获取。而仅使用传统的阅片方式来评估病灶和规划手术方案已逐渐不能满足精准外科手术的要求,计算机科学的发展为胰腺癌术前评估带来了新的途径和方法。本文综述了影像组学在胰腺癌术前评估中的研究进展并对未来进行展望。
Keywords
胰腺导管腺癌;影像组学;术前评估
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] Sung H,Ferlay J,Siegel R L,etal.Global Cancer Statisti cs 2020:GLOBOCAN Estimates of Incidence and Mortality World wide for 36 Cancers in 185 Countries[J].CA Cancer J Clin,2021, 71(3): 209-249.
[2] Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48.
[3] 郑荣寿,张思维,孙可欣,等.2016年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2023,45(3):212-220.
[4] Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics: extracting more information from medical images using advan ced feature analysis[J].Eur J Cancer,2012,48(4):441-6.
[5] Isensee F,Jaeger P F,Kohl S a A,etal.nnU-Net:a selfconfiguring method for deep learning-based biomedical ima ge segmentation[J].Nat Methods,2021,18(2):203-211.
[6] Wang Z J, Arif-Tiwari H, Zaheer A, et al. Therapeutic response assessment in pancreatic ductal adenocarcinoma: soc iety of abdominal radiology review paper on the role of morph ological and functional imaging techniques[J]. Abdom Radiol (NY),2020,45(12):4273-4289.
[7] Yimamu A,Li J,Zhang H, etal. Computed tomography and guidelines-based human-machine fusion model for predicting resectability of the pancreatic cancer[J].J Gastroenterol Hep atol,2024,39(2):399-409.
[8] Rigiroli F,Hoye J,Lerebours R,etal.CT Radiomic Featur es of Superior Mesenteric Artery Involvement in Pancreatic Ductal Adenocarcinoma: A Pilot Study[J].Radiology,2021,301(3):610-622.
[9] Ren L,Mota Reyes C,Friess H, et al. Neoadjuvant therapy in pancreatic cancer: what is the true oncological benefit?[J].Langenbecks Arch Surg,2020,405(7):879-887.
[10] Rossi G,Altabella L,Simoni N,etal.Computed tomography -based radiomic to predict resectability in locally advanced pancreatic cancer treated with chemotherapy and radiothera py[J].World J Gastrointest Oncol,2022,14(3):703-715.
[11] Wang K, Karalis J D, Elamir A, et al. Delta Radiomic Features Predict Resection Margin Status and Overall Survival in Neoadjuvant-Treated Pancreatic Cancer Patients[J]. Ann Surg Oncol,2024,31(4):2608-2620.
[12] Chen F,Zhou Y,Qi X,etal.Radiomics-Assisted Presurgic al Prediction for Surgical Portal Vein-Superior Mesenteric Vein Invasion in Pancreatic Ductal Adenocarcinoma[J]. Front Oncol,2020,10:523543.
[13] Zhou Y, Wang J, Zhang S L, et al. A CT Radiomics-Based Risk Score for Preoperative Estimation of Intraoperative Superior Mesenteric-Portal Vein Involvement in Pancreatic Ductal Adenocarcinoma[J].Ann Surg Oncol,2023,30(2):1206-1216.
[14] Bian Y, Jiang H, Ma C, et al. Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in patients with pancreatic head cancer[J]. Abdom Radiol (NY),2020,45(3):759-773.
[15] Litjens G, Broekmans J,Boers T,etal.Computed Tomography -Based Radiomics Using Tumor and Vessel Features to Assess Resectability in Cancer of the Pancreatic Head[J]. Diagnostics (Basel),2023,13(20).
[16] Zhang X P, Gao Y X, Xu S, et al. A novel online calculator to predict early recurrence and long-term survival of patients with resectable pancreatic ductal adenocarcinoma after pancreaticoduodenectomy: A multicenter study[J]. Int J Surg,2022,106:106891.
[17] Groot V P, Gemenetzis G, Blair A B, et al. Defining and Predicting Early Recurrence in 957 Patients With Resected Pancreatic Ductal Adenocarcinoma[J]. Ann Surg, 2019, 269(6): 1154-1162.
[18] Groot V P, Rezaee N, Wu W, et al. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancr eatic Ductal Adenocarcinoma[J].Ann Surg,2018,267(5):936-945.
[19] Oba A,InoueY,Ono Y,etal.Radiologically occult metast atic pancreatic cancer: how can we avoid unbeneficial resectio n?[J].Langenbecks Arch Surg,2020,405(1):35-41.
[20] Hata T, Mizuma M, Iseki M, et al. Circulating tumor DNA as a predictive marker for occult metastases in pancreatic cancer patients with radiographically non-metastatic disease [J].J Hepatobiliary Pancreat Sci,2021,28(8):648-658.
[21] Zhao B,Xia C,Xia T,etal.Development of a radiomicsbased model to predict occult liver metastases of pancreatic ductal adenocarcinoma:a multicenter study[J].Int J Surg,2024, 110(2):740-749.
[22] Badic B, Morvan M, Quénéhervé L, et al. Real World Data for Pancreatic Adenocarcinoma from a Population-Based Study in France[J].Cancers(Basel),2023,15(2).
[23] Takeda T, Sasaki T, Mie T, et al. Improved prognosis of pancreatic cancer patients with peritoneal metastasis[J]. Pancreatology,2021,21(5):903-911.
[24] Liu R C, Traverso L W. Diagnostic laparoscopy improves staging of pancreatic cancer deemed locally unresectable by computed tomography[J].Surg Endosc,2005,19(5):638-42.
[25] Shi S, Lin C, Zhou J, et al. Development and validation of a deep learning radiomics model with clinical-radiological characteristics for the identification of occult peritoneal metastases in patients with pancreatic ductal adenocarcinoma [J].Int J Surg,2024,110(5):2669-2678.
[26] Zhang Q,Yuan Y,Li S,etal.A CT-Based Radiomics Model for Evaluating Peritoneal Cancer Index in Peritoneal Metastasis Cases:A Preliminary Study[J].Acad Radiol,2023,30(7):1329-1339.
[27] Jiang C, Yuan Y, Gu B, et al. Preoperative prediction of microvascular invasion and perineural invasion in pancrea tic ductal adenocarcinoma with (18)F-FDG PET/CT radiomics analysis[J].Clin Radiol,2023,78(9):687-696.
[28] Abunahel B M, Pontre B, Kumar H, et al. Pancreas image mining: a systematic review of radiomics[J]. Eur Radiol, 2021,31(5):3447-3467.
[2] Siegel R L, Miller K D, Wagle N S, et al. Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48.
[3] 郑荣寿,张思维,孙可欣,等.2016年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2023,45(3):212-220.
[4] Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics: extracting more information from medical images using advan ced feature analysis[J].Eur J Cancer,2012,48(4):441-6.
[5] Isensee F,Jaeger P F,Kohl S a A,etal.nnU-Net:a selfconfiguring method for deep learning-based biomedical ima ge segmentation[J].Nat Methods,2021,18(2):203-211.
[6] Wang Z J, Arif-Tiwari H, Zaheer A, et al. Therapeutic response assessment in pancreatic ductal adenocarcinoma: soc iety of abdominal radiology review paper on the role of morph ological and functional imaging techniques[J]. Abdom Radiol (NY),2020,45(12):4273-4289.
[7] Yimamu A,Li J,Zhang H, etal. Computed tomography and guidelines-based human-machine fusion model for predicting resectability of the pancreatic cancer[J].J Gastroenterol Hep atol,2024,39(2):399-409.
[8] Rigiroli F,Hoye J,Lerebours R,etal.CT Radiomic Featur es of Superior Mesenteric Artery Involvement in Pancreatic Ductal Adenocarcinoma: A Pilot Study[J].Radiology,2021,301(3):610-622.
[9] Ren L,Mota Reyes C,Friess H, et al. Neoadjuvant therapy in pancreatic cancer: what is the true oncological benefit?[J].Langenbecks Arch Surg,2020,405(7):879-887.
[10] Rossi G,Altabella L,Simoni N,etal.Computed tomography -based radiomic to predict resectability in locally advanced pancreatic cancer treated with chemotherapy and radiothera py[J].World J Gastrointest Oncol,2022,14(3):703-715.
[11] Wang K, Karalis J D, Elamir A, et al. Delta Radiomic Features Predict Resection Margin Status and Overall Survival in Neoadjuvant-Treated Pancreatic Cancer Patients[J]. Ann Surg Oncol,2024,31(4):2608-2620.
[12] Chen F,Zhou Y,Qi X,etal.Radiomics-Assisted Presurgic al Prediction for Surgical Portal Vein-Superior Mesenteric Vein Invasion in Pancreatic Ductal Adenocarcinoma[J]. Front Oncol,2020,10:523543.
[13] Zhou Y, Wang J, Zhang S L, et al. A CT Radiomics-Based Risk Score for Preoperative Estimation of Intraoperative Superior Mesenteric-Portal Vein Involvement in Pancreatic Ductal Adenocarcinoma[J].Ann Surg Oncol,2023,30(2):1206-1216.
[14] Bian Y, Jiang H, Ma C, et al. Performance of CT-based radiomics in diagnosis of superior mesenteric vein resection margin in patients with pancreatic head cancer[J]. Abdom Radiol (NY),2020,45(3):759-773.
[15] Litjens G, Broekmans J,Boers T,etal.Computed Tomography -Based Radiomics Using Tumor and Vessel Features to Assess Resectability in Cancer of the Pancreatic Head[J]. Diagnostics (Basel),2023,13(20).
[16] Zhang X P, Gao Y X, Xu S, et al. A novel online calculator to predict early recurrence and long-term survival of patients with resectable pancreatic ductal adenocarcinoma after pancreaticoduodenectomy: A multicenter study[J]. Int J Surg,2022,106:106891.
[17] Groot V P, Gemenetzis G, Blair A B, et al. Defining and Predicting Early Recurrence in 957 Patients With Resected Pancreatic Ductal Adenocarcinoma[J]. Ann Surg, 2019, 269(6): 1154-1162.
[18] Groot V P, Rezaee N, Wu W, et al. Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancr eatic Ductal Adenocarcinoma[J].Ann Surg,2018,267(5):936-945.
[19] Oba A,InoueY,Ono Y,etal.Radiologically occult metast atic pancreatic cancer: how can we avoid unbeneficial resectio n?[J].Langenbecks Arch Surg,2020,405(1):35-41.
[20] Hata T, Mizuma M, Iseki M, et al. Circulating tumor DNA as a predictive marker for occult metastases in pancreatic cancer patients with radiographically non-metastatic disease [J].J Hepatobiliary Pancreat Sci,2021,28(8):648-658.
[21] Zhao B,Xia C,Xia T,etal.Development of a radiomicsbased model to predict occult liver metastases of pancreatic ductal adenocarcinoma:a multicenter study[J].Int J Surg,2024, 110(2):740-749.
[22] Badic B, Morvan M, Quénéhervé L, et al. Real World Data for Pancreatic Adenocarcinoma from a Population-Based Study in France[J].Cancers(Basel),2023,15(2).
[23] Takeda T, Sasaki T, Mie T, et al. Improved prognosis of pancreatic cancer patients with peritoneal metastasis[J]. Pancreatology,2021,21(5):903-911.
[24] Liu R C, Traverso L W. Diagnostic laparoscopy improves staging of pancreatic cancer deemed locally unresectable by computed tomography[J].Surg Endosc,2005,19(5):638-42.
[25] Shi S, Lin C, Zhou J, et al. Development and validation of a deep learning radiomics model with clinical-radiological characteristics for the identification of occult peritoneal metastases in patients with pancreatic ductal adenocarcinoma [J].Int J Surg,2024,110(5):2669-2678.
[26] Zhang Q,Yuan Y,Li S,etal.A CT-Based Radiomics Model for Evaluating Peritoneal Cancer Index in Peritoneal Metastasis Cases:A Preliminary Study[J].Acad Radiol,2023,30(7):1329-1339.
[27] Jiang C, Yuan Y, Gu B, et al. Preoperative prediction of microvascular invasion and perineural invasion in pancrea tic ductal adenocarcinoma with (18)F-FDG PET/CT radiomics analysis[J].Clin Radiol,2023,78(9):687-696.
[28] Abunahel B M, Pontre B, Kumar H, et al. Pancreas image mining: a systematic review of radiomics[J]. Eur Radiol, 2021,31(5):3447-3467.
Copyright © 2024 袁宏伟, 王虎, 王海久
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License