人工智能在病理诊断中的研究进展
Journal: Basic Medical Theory Research DOI: 10.12238/bmtr.v4i2.4987
Abstract
近年来,人工智能在医学领域取得了重大进展,并显示出了巨大潜能。人工智能方法,通过计算机模拟人类的认知功能,擅长处理和分析大量的数据,解决了传统人工对病理学活检标本检查来识别恶性细胞的形态学特征,费时费力的问题。从而有助于病理学家进行临床诊断和决策。到目前为止,人工智能不存在视觉疲劳,使得诊断结果更加客观和准确。我们对人工智能在病理诊断中的应用进行了综述。
Keywords
人工智能;深度学习;综述
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] Jang H J. Applications of deep learning for the analy sis of medical data[J].Arch Pharm Res,2019,42(6):492-504.
[2] Chen J, Sriniva C. Automatic lymphocyte detection in H&E images with deep neural networks[J].ArXiv,2016,45:67-79.
[3] Yoshid H,Shimazu T,Kiyuna T,et al.Automated histolog ical classification of whole-slide images of gastric biopsy specimens[J].Gastric Cancer,2018,21(2):249-257.
[4] Qlaokang L, Yang N, Glanmarc C, et al. Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks[J].IEEE Journal of Biomedical and Health Informatics,2018,8961781.
[5] Sun M Z , Dang H. Accurate Gastric Cancer Segmentation in Digital Pathology Images Using Deformable Convolution and Multi-Scale Embedding Networks[J].IEEE Access,2019,7:75530
[6] Schaumberg A J, Rubin M A, Fuchs T J. H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer[J].Biorxiv,2018,2:33-36.
[7] Kather J N, Pearson A T, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer[J].Nat Med,2019,25(7):1054-1056.
[8] Jackson C R, Sriharan A, Vaickus L J, et al. A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily neoplasms[J]. Modern Pathology, 2020,33(9):1638-1648.
[9] Liu Y, Li X, Zheng A, et al. Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images[J].Frontiers in Molecular,2020,7(1): 1543.
[10] Feng M, Deng Y, Yang L, et al. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carci noma[J].Diagnostic Pathology,2020,15(1):34-37.
[2] Chen J, Sriniva C. Automatic lymphocyte detection in H&E images with deep neural networks[J].ArXiv,2016,45:67-79.
[3] Yoshid H,Shimazu T,Kiyuna T,et al.Automated histolog ical classification of whole-slide images of gastric biopsy specimens[J].Gastric Cancer,2018,21(2):249-257.
[4] Qlaokang L, Yang N, Glanmarc C, et al. Gastric Pathology Image Classification Using Stepwise Fine-Tuning for Deep Neural Networks[J].IEEE Journal of Biomedical and Health Informatics,2018,8961781.
[5] Sun M Z , Dang H. Accurate Gastric Cancer Segmentation in Digital Pathology Images Using Deformable Convolution and Multi-Scale Embedding Networks[J].IEEE Access,2019,7:75530
[6] Schaumberg A J, Rubin M A, Fuchs T J. H&E-stained Whole Slide Image Deep Learning Predicts SPOP Mutation State in Prostate Cancer[J].Biorxiv,2018,2:33-36.
[7] Kather J N, Pearson A T, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer[J].Nat Med,2019,25(7):1054-1056.
[8] Jackson C R, Sriharan A, Vaickus L J, et al. A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily neoplasms[J]. Modern Pathology, 2020,33(9):1638-1648.
[9] Liu Y, Li X, Zheng A, et al. Predict Ki-67 Positive Cells in H&E-Stained Images Using Deep Learning Independently From IHC-Stained Images[J].Frontiers in Molecular,2020,7(1): 1543.
[10] Feng M, Deng Y, Yang L, et al. Automated quantitative analysis of Ki-67 staining and HE images recognition and registration based on whole tissue sections in breast carci noma[J].Diagnostic Pathology,2020,15(1):34-37.
Copyright © 2022 王继仙, 陈万远, 张志勇
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License