自适应常春藤 ADIVY 优化算法设计及其工程应用
Journal: 空天科技 DOI: 10.12238/ast.v1i1.13708
Abstract
针对常春藤(IVY)优化算法在复杂优化问题中的全局搜索能力不足和收敛速度较慢的问题,提出了一种自适应常春藤ADIVY算法,提升优化效率和精度。首先,采用拉丁超立方体采样(Latin Hypercube Sampling, LHS)与黄金分割比的非均匀初始化(Golden Ratio-based Nonuniform Initialization, GRN)融合,扩展初始种群的搜索范围,并增强了种群分布的均匀性和多样性,并设计动态压缩归一化映射(Dynamic Compression Normalization Mapping, DCNM)增强边界区域探索能力,其次,融合自适应创新点和多样性维持机制(Adaptive Innovation and Diversity Maintenance Mechanism, AIDM),在早熟收敛或多样性不足时对部分个体进行重置或变异,增强了跳出局部最优的能力。此外,设计了一种动态位置翻筋斗扰动选择(The dynamic position tumbling disturbance selection can be abbreviated as, DPTDS)机制,改进全新的GV长向量,结合全局最优解和局部梯度信息,平衡了大范围跳跃与精细微调,提升搜索速度与精度。最后,提出动态平滑飞行-HHO(Dynamic Smoothing Flight in Harris Hawks Optimization, DSF-HHO)策略,通过引入哈里斯鹰算法的“渐变逃逸能量”概念,减少了解空间的抖动,增强全局搜索能力。基准函数和实际工程应用的对比实验及Wilcoxon秩和检验结果表明,改进的ADIVY算法在全局搜索、鲁棒性和收敛速度上均优于原始算法与其他主流算法,验证了其在工程应用中的有效性和优越性。
Keywords
IVY优化算法;多策略融合;多样性维持机制;动态平滑飞行;工程应用;翻筋斗云;渐变逃逸能量;全局搜索能力
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] 朱孝山, 刘伟伟. 融合多策略改进黑猩猩优化算法的UAV航迹规划[J]. 电光与控制, 2024, 31(08): 50-57,68.
[2] 马志海, 刘升. 增强型野马优化算法及其工程应用[J].计算机应用研究, 2024, 41(07): 2061-2068.
[3] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(04): 668-678.
[4] Cui J, Wu L, Huang X, 等. Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning[J]. Knowledge-Based Systems, 2024, 288: 111459.
[5] Yao J, Luo X, Li F, et al. Research on hybrid strategy Particle Swarm Optimization algorithm and its applications[J]. Scientific Reports, 2024, 14(1): 24928.
[6] 陈旭升, 刘媛华. 多策略协同的足球队训练优化算法及其工程应用[J/OL]. 计算机工程与科学, 1-15[2025-03-22].
[7] 文裕杰, 张达敏. 增强型白鲸优化算法及其应用[J/OL]. 山东大学学报(工学版), 1-12[2025-03-22].
[8] 吴亚中, 陈璐, 马强, 等.多策略增强的蜣螂优化算法及其工程应用[J]. 华中科技大学学报(自然科学版), 2025, 53(02): 95-103.
[9] Akl D T, Saafan M M, Haikal A Y, 等. IHHO: an improved Harris Hawks optimization algorithm for solving engineering problems[J]. Neural Computing and Applications, 2024, 36(20): 12185-12298.
[10] Liu Y, As’ arry A, Hassan M K, 等. Review of the grey wolf optimization algorithm: variants and applications[J]. Neural Computing and Applications, 2024, 36(6): 2713-2735.
[11] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2023, 49(11): 2360-2373.
[12] Ghasemi M, Zare M, Trojovský P, 等. Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm[J]. Knowledge-Based Systems, 2024, 295: 111850.
[13] 蔡玉林, 黄诗冰, 徐剑波,等. 基于常春藤算法优化机器学习模型预测边坡稳定性的研究[J/OL]. 金属矿山, 1-11[2025-03-22].
[14] 王恒迪, 王豪馗, 陈鹏, 等. 基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型[J/OL]. 机电工程, 1-10[2025-03-22].
[15] Ouyang H, Li W, Gao F, et al. Research on Fault Diagnosis of Ship Diesel Generator System Based on IVY-RF[J]. Energies (19961073), 2024, 17(22).
[16] Gao H, Wang H, Shen H, et al. Multi-modal denoised data-driven milling chatter detection using an optimized hybrid neural network architecture[J]. Scientific Reports, 2025, 15(1): 3953.
[17] 吴禹志, 黄明, 夏静, 等.融合多策略增强型IVYA和DWA算法的多机动态航迹规划[J]. 计算机时代, 2025(02): 11-15.
[18] Zhang C, Lin W, Hu G. An enhanced ivy algorithm fusing multiple strategies for global optimization problems[J]. Advances in Engineering Software, 2025, 203: 103862.
[19] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51-67.
[20] Xue J, Shen B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[21] Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft computing, 2019, 23: 715-734.
[22] Faris H, Aljarah I, Al-Betar M A, 等. Grey wolf optimizer: a review of recent variants and applications[J]. Neural computing and applications, 2018, 30: 413-435.
[23] Heidari A A, Mirjalili S, Faris H, 等. Harris hawks optimization: Algorithm and applications[J]. Future generation computer systems, 2019, 97: 849-872.
[24] Hashim F A, Hussien A G. Snake Optimizer: A novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: 108320.
[25] Mirjalili S, Mirjalili S M, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27: 495-513.
[26] Seyyedabbasi A, Kiani F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J]. Engineering with computers, 2023, 39(4): 2627-2651.
[27] Oladejo S O, Ekwe S O, Mirjalili S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach[J]. Knowledge-Based Systems, 2024, 296: 111880.
[28] Wang H, Tang J, Pan Q. MSI-HHO: Multi-strategy improved HHO algorithm for global optimization[J]. Mathematics, 2024, 12(3): 415.
[29] Mabdeh A N, A** R S, Razavi-Termeh S V, et al. Enhancing the performance of machine learning and deep learning-based flood susceptibility models by integrating grey wolf optimizer (GWO) algorithm[J]. Remote Sensing, 2024, 16(14): 2595.
[30] 王永贵, 赵炀, 邹赫宇, 等. 多策略融合的蛇优化算法及其应用[J] .计算机应用研究, 2024, 41(01): 134-141.
[2] 马志海, 刘升. 增强型野马优化算法及其工程应用[J].计算机应用研究, 2024, 41(07): 2061-2068.
[3] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(04): 668-678.
[4] Cui J, Wu L, Huang X, 等. Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning[J]. Knowledge-Based Systems, 2024, 288: 111459.
[5] Yao J, Luo X, Li F, et al. Research on hybrid strategy Particle Swarm Optimization algorithm and its applications[J]. Scientific Reports, 2024, 14(1): 24928.
[6] 陈旭升, 刘媛华. 多策略协同的足球队训练优化算法及其工程应用[J/OL]. 计算机工程与科学, 1-15[2025-03-22].
[7] 文裕杰, 张达敏. 增强型白鲸优化算法及其应用[J/OL]. 山东大学学报(工学版), 1-12[2025-03-22].
[8] 吴亚中, 陈璐, 马强, 等.多策略增强的蜣螂优化算法及其工程应用[J]. 华中科技大学学报(自然科学版), 2025, 53(02): 95-103.
[9] Akl D T, Saafan M M, Haikal A Y, 等. IHHO: an improved Harris Hawks optimization algorithm for solving engineering problems[J]. Neural Computing and Applications, 2024, 36(20): 12185-12298.
[10] Liu Y, As’ arry A, Hassan M K, 等. Review of the grey wolf optimization algorithm: variants and applications[J]. Neural Computing and Applications, 2024, 36(6): 2713-2735.
[11] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2023, 49(11): 2360-2373.
[12] Ghasemi M, Zare M, Trojovský P, 等. Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm[J]. Knowledge-Based Systems, 2024, 295: 111850.
[13] 蔡玉林, 黄诗冰, 徐剑波,等. 基于常春藤算法优化机器学习模型预测边坡稳定性的研究[J/OL]. 金属矿山, 1-11[2025-03-22].
[14] 王恒迪, 王豪馗, 陈鹏, 等. 基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型[J/OL]. 机电工程, 1-10[2025-03-22].
[15] Ouyang H, Li W, Gao F, et al. Research on Fault Diagnosis of Ship Diesel Generator System Based on IVY-RF[J]. Energies (19961073), 2024, 17(22).
[16] Gao H, Wang H, Shen H, et al. Multi-modal denoised data-driven milling chatter detection using an optimized hybrid neural network architecture[J]. Scientific Reports, 2025, 15(1): 3953.
[17] 吴禹志, 黄明, 夏静, 等.融合多策略增强型IVYA和DWA算法的多机动态航迹规划[J]. 计算机时代, 2025(02): 11-15.
[18] Zhang C, Lin W, Hu G. An enhanced ivy algorithm fusing multiple strategies for global optimization problems[J]. Advances in Engineering Software, 2025, 203: 103862.
[19] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51-67.
[20] Xue J, Shen B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[21] Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft computing, 2019, 23: 715-734.
[22] Faris H, Aljarah I, Al-Betar M A, 等. Grey wolf optimizer: a review of recent variants and applications[J]. Neural computing and applications, 2018, 30: 413-435.
[23] Heidari A A, Mirjalili S, Faris H, 等. Harris hawks optimization: Algorithm and applications[J]. Future generation computer systems, 2019, 97: 849-872.
[24] Hashim F A, Hussien A G. Snake Optimizer: A novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: 108320.
[25] Mirjalili S, Mirjalili S M, Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27: 495-513.
[26] Seyyedabbasi A, Kiani F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems[J]. Engineering with computers, 2023, 39(4): 2627-2651.
[27] Oladejo S O, Ekwe S O, Mirjalili S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach[J]. Knowledge-Based Systems, 2024, 296: 111880.
[28] Wang H, Tang J, Pan Q. MSI-HHO: Multi-strategy improved HHO algorithm for global optimization[J]. Mathematics, 2024, 12(3): 415.
[29] Mabdeh A N, A** R S, Razavi-Termeh S V, et al. Enhancing the performance of machine learning and deep learning-based flood susceptibility models by integrating grey wolf optimizer (GWO) algorithm[J]. Remote Sensing, 2024, 16(14): 2595.
[30] 王永贵, 赵炀, 邹赫宇, 等. 多策略融合的蛇优化算法及其应用[J] .计算机应用研究, 2024, 41(01): 134-141.
Copyright © 2025 刘俊毅

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License