面向 NTN 毫米波低轨卫星通信的自适应数据辅助迭代信道估计与解码

Journal: 空天科技 DOI: 10.12238/ast.v1i1.13706

万达, 吴胜

北京邮电大学 电子工程学院 北京;北京邮电大学 信息与通信工程学院 北京

Abstract

非地面网络(NTNs)连接低地球轨道(LEO)卫星等组件,其移动性会导致快速时变的无线信道和显著的多普勒频移。传统的基于导频的信道估计(PACE)方法要么性能受限,要么需要过高的导频开销。数据辅助信道估计(DACE)作为一种潜在的改进路径,利用数据向量补充导频信号。然而,该方法在频率偏移和快速信道变化下难以有效选择数据向量。为此,该研究提出了一种自适应数据选择辅助的迭代信道估计与解码方案。首先,对接收星座图的相位和幅度偏移进行周期性分析和插值估计,确保即使在显著信道变化下也能有效选择数据。然后,将数据可靠性与信道变化相关联,通过跟踪特定导频的最大后验(MAP)估计变化,在时变信道中自适应选择可靠数据向量。此外,开发了数据辅助的迭代联合估计框架,通过整合解码的对数似然比(LLR)结果重新选择数据向量,并在迭代估计过程中利用它们构建约束边界。该方法显著提升了现有协议下LEO链路的性能,兼容更高阶调制和频段。仿真结果表明,在短相干块场景下,该方案可减少75%的导频开销,或在相同导频开销下将频率偏移鲁棒性提高200%。

Keywords

信道估计;数据辅助;低地球轨道;非地面网络

References

[1] X. Lin, 等, "On the Path to 6G: Embracing the Next Wave of Low Earth Orbit Satellite Access," IEEE Commun. Mag., vol. 59, no. 12, pp. 36-42, 2021.
[2] S. Liu, 等, "LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains?," IEEE Commun. Mag., vol. 59, no. 7, pp. 30-36, 2021.
[3] S. Mahboob, L. Liu, "Revolutionizing Future Connectivity: A Contemporary Survey on AI-Empowered Satellite-Based Non-Terrestrial Networks in 6G," IEEE Commun. Surveys Tuts., vol. 26, no. 2, pp. 1279-1321, 2024.
[4] Z. Jia, 等, "LEO Satellite Access Network for 6G," IEEE Network, vol. 37, no. 2, pp. 94-101, 2023.
[5] Y. Wu, 等, "Non-Terrestrial Networks for 6G: Standardization, Advances and Challenges," IEEE J. Sel. Areas Commun., vol. 41, no. 6, pp. 1715-1732, 2023.
[6] H. Yin, 等, "LEO Satellite Communications: Opportunities, Challenges and the Road Ahead," IEEE Commun. Mag., vol. 60, no. 3, pp. 44-50, 2022.
[7] 3GPP TR 38.821, "Solutions for NR to Support Non-Terrestrial Networks (NTN)," 2023.
[8] 3GPP TR 38.811, "Study on New Radio (NR) to Support Non-Terrestrial Networks," 2022.
[9] 3GPP TR 38.821, "Solutions for NR to Support Non-Terrestrial Networks (NTN)," 2023.
[10] 3GPP TS 38.101, "NR User Equipment (UE) Radio Transmission and Reception," 2023.
[11] L. You, 等, "Channel Modeling for LEO Satellite Communication Systems," IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3456-3470, 2022.
[12] K. An, 等, "LEO Satellite Channel Characterization for 6G," IEEE Trans. Veh. Technol., vol. 72, no. 3, pp. 3015-3029, 2023.
[13] M. Giordani, 等, "Toward 6G Non-Terrestrial Networks," IEEE Network, vol. 36, no. 1, pp. 212-218, 2022.
[14] H. Tataria, 等, "Reconfigurable Intelligent Surface-Assisted LEO Satellite Communications," IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2442-2456, 2023.
[15] Z. Zhang, 等, "LEO Satellite Channel Estimation: Challenges and Solutions," IEEE Commun. Mag., vol. 61, no. 4, pp. 98-104, 2023.
[16] Q. Zhang, 等, "LEO Satellite Constellations: From Theory to Practice," IEEE Wireless Commun., vol. 29, no. 4, pp. 78-84, 2022.
[17] W. Wang, 等, "Doppler Compensation for LEO Satellite Communications," IEEE Trans. Commun., vol. 71, no. 5, pp. 2765-2779, 2023.
[18] L. Bai, 等, "Channel Estimation for High-Mobility LEO Satellite Communications," IEEE Trans. Wireless Commun., vol. 22, no. 7, pp. 4895-4909, 2023.
[19] S. Chen, 等, "Iterative Channel Estimation for LEO Satellite Systems," IEEE Trans. Veh. Technol., vol. 72, no. 2, pp. 1892-1906, 2023.
[20] Y. Yuan, 等, "Pilot Design for LEO Satellite Channel Estimation," IEEE Trans. Commun., vol. 70, no. 11, pp. 7346-7360, 2022.
[21] K. Wang, 等, "Data-Aided Channel Estimation for NTN," IEEE Wireless Commun. Lett., vol. 12, no. 5, pp. 923-927, 2023.
[22] J. Li, 等, "Deep Learning Based Channel Estimation for LEO Satellites," IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 2, pp. 412-426, 2023.
[23] H. Zhang, 等, "Joint Channel Estimation and Data Detection for LEO Systems," IEEE Trans. Commun., vol. 71, no. 3, pp. 1789-1803, 2023.
[24] M. Zhou, 等, "Adaptive Data Selection for Channel Estimation," IEEE Trans. Signal Process., vol. 71, pp. 1568-1582, 2023.
[25] L. Wang, 等, "Iterative Receiver Design for LEO Satellite Communications," IEEE J. Sel. Topics Signal Process., vol. 17, no. 4, pp. 789-803, 2023.
[26] S. Wu, 等, "Machine Learning Assisted Channel Estimation for NTN," IEEE Trans. Mach. Learn. Commun. Netw., vol. 1, pp. 1-15, 2023.
[27] G. Liu, 等, "Dynamic Resource Allocation in LEO Satellite Networks," IEEE Trans. Wireless Commun., vol. 22, no. 9, pp. 6125-6139, 2023.
[28] F. Yang, 等, "Beamforming Techniques for LEO Satellite Communications," IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 3, pp. 2543-2557, 2023.
[29] R. Zhao, 等, "MIMO Techniques for Non-Terrestrial Networks," IEEE J. Sel. Areas Commun., vol. 41, no. 10, pp. 2965-2979, 2023.
[30] P. Chen, 等, "Interference Management in LEO Constellations," IEEE Trans. Commun., vol. 71, no. 7, pp. 4123-4137, 2023.
[31] T. Li, 等, "Handover Management in LEO Satellite Networks," IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 7892-7906, 2023.
[32] W. Zhang, 等, "QoS Provisioning in Non-Terrestrial Networks," IEEE Commun. Mag., vol. 61, no. 8, pp. 120-126, 2023.
[33] L. Chen, 等, "Energy-Efficient LEO Satellite Communications," IEEE Trans. Green Commun. Netw., vol. 7, no. 2, pp. 876-890, 2023.
[34] X. Wang, 等, "Security Issues in Non-Terrestrial Networks," IEEE Netw., vol. 37, no. 4, pp. 212-219, 2023.
[35] Y. Liu, 等, "AI-Based Optimization for LEO Satellite Networks," IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 4125-4139, 2023.
[36] J. Zhang, 等, "Traffic Prediction in LEO Satellite Networks," IEEE Trans. Mob. Comput., vol. 22, no. 7, pp. 4125-4139, 2023.
[37] C. Zhou, 等, "Edge Computing in Non-Terrestrial Networks," IEEE Internet Things J., vol. 10, no. 15, pp. 13456-13471, 2023.
[38] D. Wu, 等, "Network Slicing for LEO Satellite Networks," IEEE J. Sel. Areas Commun., vol. 41, no. 11, pp. 3456-3470, 2023.
[39] H. Wang, 等, "Standardization Progress for Non-Terrestrial Networks," IEEE Commun. Stand. Mag., vol. 7, no. 3, pp. 78-84, 2023.
[40] K. Li, 等, "Experimental Results for LEO Satellite Channel Estimation," IEEE Trans. Instrum. Meas., vol. 72, pp. 1-15, 2023.

Copyright © 2025 万达, 吴胜

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License