雷达波镜面反射特性实时可调控结构研究进展
Journal: 空天科技 DOI: 10.12238/ast.v1i1.13705
Abstract
随着传感器技术的迅速发展,装备面临日益严峻的探测与监视挑战,非隐身装备在对抗环境中暴露的风险加剧。因此,迫切需要发展可调控的电磁技术以减小雷达特征,提高隐身性能。传统吸波结构因其响应固定限制了其适应性,因此引入实时可逆调控材料结构来实现动态调控的策略已逐渐成为研究热点。作为电磁散射的主要作用形式之一,材料结构的雷达波镜面反射特性在目标特性形成机制起到了重要作用。该研究概述了近期利用电调节、机械调节、可调材料等形式进行实时电磁波镜面反射特性调控的机理研究进展。雷达波镜面反射特性实时可调控材料能够作为智能雷达特征对抗装备的基础模块,利用人工智能及大数据技术,提升现代装备的雷达波伪装及对抗能力。
Keywords
材料结构;目标特性;动态可调;特征对抗
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] GIL I, BONACHE J, GARCIA-GARCIA J, et al. Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(6): 2665-2674.
[2] AYDIN K, OZBAY E. Capacitor-loaded split ring resonators as tunable metamaterial components[J]. Journal of Applied Physics, 2007, 101(2): 11-16.
[3] GIL I, MARTIN F, ROTTENBERG X, et al. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials[J]. Electronics Letters, 2007, 43(21): 1153-1154.
[4] GIL I, GARCIA-GARCIA J, BONACHE J, et al. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies[J]. Electronics Letters, 2004, 40(21): 1347-1348.
[5] LIM S, CALOZ C, ITOH T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(12): 2678-2690.
[6] SENSALE-RODRIGUEZ B, YAN R, LIU L, et al. Graphene for reconfigurable terahertz optoelectronics[J]. Proceedings of the IEEE, 2013, 101(7): 1705-1716.
[7] YOO M, LIM S. Switchable electromagnetic reflector/absorber with electric-field-coupled LC resonator[J]. Electromagnetics, 2014, 34(5): 421-429.
[8] YOO M, LIM S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7(11): 112204.
[9] ZHU B, FENG Y, ZHAO J, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Applied Physics Letters, 2010, 97(5): 252-258.
[10] GHOSH S, SRIVASTAVA K V. Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3665-3670.
[11] KONG P, YU X W, ZHAO M, et al. Switchable frequency selective surfaces absorber/reflector for wideband applications[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(11): 1473-1485.
[12] LI J, JIANG J, HE Y, et al. Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 774-777.
[13] WANG H, KONG P, CHENG W, et al. Broadband tunability of polarization-insensitive absorber based on frequency selective surface[J]. Scientific Reports, 2016, 6(1): 23081.
[14] HE Y, JIANG J, CHEN M, et al. Design of an adjustable polarization-independent and wideband electromagnetic absorber[J]. Journal of Applied Physics, 2016, 119(10): 83671.
[15] LI H, COSTA F, WANG Y, et al. A wideband multifunctional absorber/reflector with polarization-insensitive performance[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(6): 5033-5038.
[16] CHEN H, CAO Q, WANG Y. A wideband switchable absorber/reflector based on active frequency selective surface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(1): e22474.
[17] ZHAO B, HUANG C, YANG J, et al. Broadband polarization-insensitive tunable absorber using active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(6): 982-986.
[18] HAN Y, DENG L, WANG S, et al. Flexible microwave metasurface absorber with reconfigurable absorption intensity in ultra-wideband[J]. AEU-International Journal of Electronics and Communications, 2023, 170: 154789.
[19] ZHANG Y, CAO Z, HUANG Z, et al. Ultrabroadband double-sided and dual-tuned active absorber for UHF band[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(2): 1204-1208.
[20] WU Z, ZHAO J, CHEN K, et al. An active metamaterial absorber with ultrawideband continuous tunability[J]. IEEE Access, 2022, 10: 25290-25295.
[21] ZHANG F, FENG S, QIU K, et al. Mechanically stretchable and tunable metamaterial absorber[J]. Applied Physics Letters, 2015, 106(9): 43851.
[22] JEONG H, TENTZERIS M M, LIM S. Frequency-tunable electromagnetic absorber by mechanically controlling substrate thickness[J]. International Journal of Antennas and Propagation, 2018, 2018: 56-61.
[23] KIM J, JEONG H, LIM S. Mechanically actuated frequency reconfigurable metamaterial absorber[J]. Sensors and Actuators A: Physical, 2019, 299: 111619.
[24] LIM D, LIM S. Liquid-metal-fluidically switchable metasurface for broadband and polarization-insensitive absorption[J]. IEEE Access, 2018, 6: 40854-40859.
[25] GHOSH S, LIM S. Fluidically switchable metasurface for wide spectrum absorption[J]. Scientific Reports, 2018, 8(1): 10169.
[26] BALCI O, POLAT E O, KAKENOV N, et al. Graphene-enabled electrically switchable radar-absorbing surfaces[J]. Nature Communications, 2015, 6(1): 1-10.
[27] WANG Y, SONG M, PU M, et al. Staked graphene for tunable terahertz absorber with customized bandwidth[J]. Plasmonics, 2016, 11: 1201-1206.
[28] HUANG C, ZHAO B, SONG J, et al. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3593-3598.
[29] HUANG C, SONG J, JI C, et al. Simultaneous control of absorbing frequency and amplitude using graphene capacitor and active frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(3): 1793-1798.
[30] LIU Y, ZHOU J, CHANG Q, et al. Transparent and electrically tunable electromagnetic wave absorbing metamaterial[J]. Applied Physics Letters, 2022, 120(9): 75286.
[31] LIU L, SHADRIVOV I V, POWELL D A, et al. Temperature control of terahertz metamaterials with liquid crystals[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 827-831.
[32] ZHU B O, ZHAO J, FENG Y. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3(1): 3059.
[33] RATNI B, DE LUSTRAC A, PIAU G P, et al. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface[J]. Applied Physics Letters, 2017, 111(21): 57-63.
[34] HUANG C, ZHANG C, YANG J, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485.
[35] HUANG C, SUN B, PAN W, et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface[J]. Scientific Reports, 2017, 7(1): 42302.
[36] LI W, QIU T, WANG J, et al. Programmable coding metasurface reflector for reconfigurable multibeam antenna application[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(1): 296-301.
[37] QIAN C, ZHENG B, SHEN Y, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383-390.
[38] ZHANG X G, SUN Y L, YU Q, et al. Smart Doppler cloak operating in broad band and full polarizations[J]. Advanced Materials, 2021, 33(17): 2007966.
[39] MA Q, BAI G D, JING H B, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8(1): 98.
[40] MA Q, HONG Q R, GAO X X, et al. Smart sensing metasurface with self-defined functions in dual polarizations[J]. Nanophotonics, 2020, 9(10): 3271-3278.
[2] AYDIN K, OZBAY E. Capacitor-loaded split ring resonators as tunable metamaterial components[J]. Journal of Applied Physics, 2007, 101(2): 11-16.
[3] GIL I, MARTIN F, ROTTENBERG X, et al. Tunable stop-band filter at Q-band based on RF-MEMS metamaterials[J]. Electronics Letters, 2007, 43(21): 1153-1154.
[4] GIL I, GARCIA-GARCIA J, BONACHE J, et al. Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies[J]. Electronics Letters, 2004, 40(21): 1347-1348.
[5] LIM S, CALOZ C, ITOH T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(12): 2678-2690.
[6] SENSALE-RODRIGUEZ B, YAN R, LIU L, et al. Graphene for reconfigurable terahertz optoelectronics[J]. Proceedings of the IEEE, 2013, 101(7): 1705-1716.
[7] YOO M, LIM S. Switchable electromagnetic reflector/absorber with electric-field-coupled LC resonator[J]. Electromagnetics, 2014, 34(5): 421-429.
[8] YOO M, LIM S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7(11): 112204.
[9] ZHU B, FENG Y, ZHAO J, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Applied Physics Letters, 2010, 97(5): 252-258.
[10] GHOSH S, SRIVASTAVA K V. Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3665-3670.
[11] KONG P, YU X W, ZHAO M, et al. Switchable frequency selective surfaces absorber/reflector for wideband applications[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(11): 1473-1485.
[12] LI J, JIANG J, HE Y, et al. Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 774-777.
[13] WANG H, KONG P, CHENG W, et al. Broadband tunability of polarization-insensitive absorber based on frequency selective surface[J]. Scientific Reports, 2016, 6(1): 23081.
[14] HE Y, JIANG J, CHEN M, et al. Design of an adjustable polarization-independent and wideband electromagnetic absorber[J]. Journal of Applied Physics, 2016, 119(10): 83671.
[15] LI H, COSTA F, WANG Y, et al. A wideband multifunctional absorber/reflector with polarization-insensitive performance[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(6): 5033-5038.
[16] CHEN H, CAO Q, WANG Y. A wideband switchable absorber/reflector based on active frequency selective surface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(1): e22474.
[17] ZHAO B, HUANG C, YANG J, et al. Broadband polarization-insensitive tunable absorber using active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(6): 982-986.
[18] HAN Y, DENG L, WANG S, et al. Flexible microwave metasurface absorber with reconfigurable absorption intensity in ultra-wideband[J]. AEU-International Journal of Electronics and Communications, 2023, 170: 154789.
[19] ZHANG Y, CAO Z, HUANG Z, et al. Ultrabroadband double-sided and dual-tuned active absorber for UHF band[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(2): 1204-1208.
[20] WU Z, ZHAO J, CHEN K, et al. An active metamaterial absorber with ultrawideband continuous tunability[J]. IEEE Access, 2022, 10: 25290-25295.
[21] ZHANG F, FENG S, QIU K, et al. Mechanically stretchable and tunable metamaterial absorber[J]. Applied Physics Letters, 2015, 106(9): 43851.
[22] JEONG H, TENTZERIS M M, LIM S. Frequency-tunable electromagnetic absorber by mechanically controlling substrate thickness[J]. International Journal of Antennas and Propagation, 2018, 2018: 56-61.
[23] KIM J, JEONG H, LIM S. Mechanically actuated frequency reconfigurable metamaterial absorber[J]. Sensors and Actuators A: Physical, 2019, 299: 111619.
[24] LIM D, LIM S. Liquid-metal-fluidically switchable metasurface for broadband and polarization-insensitive absorption[J]. IEEE Access, 2018, 6: 40854-40859.
[25] GHOSH S, LIM S. Fluidically switchable metasurface for wide spectrum absorption[J]. Scientific Reports, 2018, 8(1): 10169.
[26] BALCI O, POLAT E O, KAKENOV N, et al. Graphene-enabled electrically switchable radar-absorbing surfaces[J]. Nature Communications, 2015, 6(1): 1-10.
[27] WANG Y, SONG M, PU M, et al. Staked graphene for tunable terahertz absorber with customized bandwidth[J]. Plasmonics, 2016, 11: 1201-1206.
[28] HUANG C, ZHAO B, SONG J, et al. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(6): 3593-3598.
[29] HUANG C, SONG J, JI C, et al. Simultaneous control of absorbing frequency and amplitude using graphene capacitor and active frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(3): 1793-1798.
[30] LIU Y, ZHOU J, CHANG Q, et al. Transparent and electrically tunable electromagnetic wave absorbing metamaterial[J]. Applied Physics Letters, 2022, 120(9): 75286.
[31] LIU L, SHADRIVOV I V, POWELL D A, et al. Temperature control of terahertz metamaterials with liquid crystals[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 827-831.
[32] ZHU B O, ZHAO J, FENG Y. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3(1): 3059.
[33] RATNI B, DE LUSTRAC A, PIAU G P, et al. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface[J]. Applied Physics Letters, 2017, 111(21): 57-63.
[34] HUANG C, ZHANG C, YANG J, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485.
[35] HUANG C, SUN B, PAN W, et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface[J]. Scientific Reports, 2017, 7(1): 42302.
[36] LI W, QIU T, WANG J, et al. Programmable coding metasurface reflector for reconfigurable multibeam antenna application[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(1): 296-301.
[37] QIAN C, ZHENG B, SHEN Y, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383-390.
[38] ZHANG X G, SUN Y L, YU Q, et al. Smart Doppler cloak operating in broad band and full polarizations[J]. Advanced Materials, 2021, 33(17): 2007966.
[39] MA Q, BAI G D, JING H B, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8(1): 98.
[40] MA Q, HONG Q R, GAO X X, et al. Smart sensing metasurface with self-defined functions in dual polarizations[J]. Nanophotonics, 2020, 9(10): 3271-3278.
Copyright © 2025 孙伟彬, 姚石磊, 张啸雨, 李慧, 元旭津, 王岩, 孙新, 殷红成

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License