基于多流形表达的目标单次反射/绕射机理散射中心的全视角参数化建模方法
Journal: 空天科技 DOI: 10.12238/ast.v1i1.13701
Abstract
诸多雷达应用,如场景信号模拟、目标识别等,需要通过适当的稀疏表示来压缩和快速重构目标散射特性数据。散射中心模型是一种广泛被采用的目标散射特性模型,可实现目标散射特性数据的稀疏、降维表达。该研究首先针对具有单次反射/绕射机理的目标散射特性数据,基于高频渐近理论和射线理论揭示了全视角散射中心(Global SC, GSC)的多流形结构。然后引入多流形结构聚类和曲线/曲面拟合算法来构建目标GSC模型。为了验证提出的理论和算法,对球头锥目标进行了仿真实验。仿真结果表明,GSC模型可以大幅压缩全视角散射特性数据,同时确保重构精度。提出的多流形GSC表示模型及构建方法,可有效支撑半实物仿真系统有限内部存储下的快速信号模拟等应用。
Keywords
散射中心;全视角散射中心;散射中心角度关联;多流形;散射机理
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116-130.
[2] HUA Y, SARKAR T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J]. IEEE Transactions on Acoustics, Speech & Signal Processing, 1990, 38(5): 814-824.
[3] HURST M P, MITTRA R. Scattering center analysis via Prony's method[J]. IEEE Transactions on Antennas & Propagation, 1987, 35(8): 986-988.
[4] POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas & Propagation, 1995, 443(10): 1058-1067.
[5] GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas & Propagation, 1999, 47(7): 1179-1188.
[6] TSENG N. A very efficient RCS data compression and reconstruction technique[R]. Columbus: The Ohio State University, 1992.
[7] CHANG L C, GUPTA I J, BURNSIDE W D, et al. A data compression technique for scattered fields from complex targets[J]. IEEE Transactions on Antennas & Propagation, 1997, 45(8): 1245 -- 1251.
[8] 王菁. 光学区雷达目标散射中心提取及其应用研究[D]. 南京: 南京航空航天大学, 2010.
[9] YANG Z L, FANG D G, SHENG W X. Frequency Extrapolation by Genetic Algorithm Based on GTD Model for Radar Cross Section[J]. Chinese Journal of Electronics, 2001, 10(4): 552-556.
[10] 邱志强. 基于空间谱估计的雷达目标散射中心提取研究[D]. 成都: 电子科技大学, 2016.
[11] BHALLA R, LING H. Three-Dimensional Scattering Center Extraction Using the Shooting and Bouncing Ray Technique[J]. IEEE Transactions on Antennas & Propagation, 1996, 44(11): 1445-1453.
[12] 闫华, 张磊, 陆金文等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370-381.
[13] 陆金文, 闫华, 张磊等. 基于弹跳射线技术的三维GTD模型构建方法[J]. 系统工程与电子技术, 2021, 43(8): 2028-2036.
[14] BHALLA R, MOORE J, LING H. A global scattering center representation of complex targets using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas & Propagation, 1997, 45(12): 1850-1856.
[15] ZHOU J X, ZHAO H Z, SHI Z G, et al. Global scattering center model extraction of radar targets based on wideband measurements[J]. IEEE Trans. on Antennas & Propagation, 2008, 56(7): 2051-2060.
[16] ZHOU J X, SHI Z G, FU Q. Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(3): 1638-1655.
[17] HU J M, WEI W, ZHAI Q L, et al. Global scattering center extraction for radar targets using a modified RANSAC method[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(8): 3573-3586.
[18] GUO K Y, LI Q F, SHENG X Q, et al. Sliding scattering center model for extended streamlined targets[J]. Progress in Electromagnetics Research, 2013, 139(3): 499-516.
[19] ZHOU Y. High Frequency electromagnetic scattering prediction and scattering feature extraction[D]. Austin : The University of Texas at Austin, 2005.
[20] RAYNAL A M. Feature-Based Exploitation of Multidimensional Radar Signatures[D]. Austin: The University of Texas at Austin, 2008.
[21] 周哲夫. 典型体散射中心参数化模型重构方法及其应用[D]. 北京:中国航天科工二院研究生院, 2016.
[22] 闫华. 目标电磁散射参数化表达与建模方法研究[D]. 北京:中国传媒大学, 2020.
[23] PEREZ J, CATEDRA M F. Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces[J]. IEEE Transactions Antennas & Propagation, 1994, 42(10): 1404–1411.
[24] JACKSON J A, RIGLING B D, MOSES R L. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(2): 525-541.
[25] Wang Y, Jiang Y, Wu Y. Spectral Clustering on Multiple Manifolds. IEEE Transactions on Neural Networks, 2011, 22(7): 1149-1161.
[26] LING H, CHOU R C, LEE S W. Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions Antennas & Propagation, 1989, 37(2): 194-205.
[27] BHALLA R, LING H. A fast algorithm for signature prediction and image formation using the shooting and bouncing ray technique[J]. IEEE Transactions Antennas & Propagation, 1995, 43(7): 727-731.
[28] TSAO J, STEINBERG B D. Reduction of Sidelobe and Speckle Artifacts in Microwave Imaging: The CLEAN Technique[J]. IEEE Transactions on Antennas & Propagation, 1988, 36(4): 543-556.
[2] HUA Y, SARKAR T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J]. IEEE Transactions on Acoustics, Speech & Signal Processing, 1990, 38(5): 814-824.
[3] HURST M P, MITTRA R. Scattering center analysis via Prony's method[J]. IEEE Transactions on Antennas & Propagation, 1987, 35(8): 986-988.
[4] POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas & Propagation, 1995, 443(10): 1058-1067.
[5] GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas & Propagation, 1999, 47(7): 1179-1188.
[6] TSENG N. A very efficient RCS data compression and reconstruction technique[R]. Columbus: The Ohio State University, 1992.
[7] CHANG L C, GUPTA I J, BURNSIDE W D, et al. A data compression technique for scattered fields from complex targets[J]. IEEE Transactions on Antennas & Propagation, 1997, 45(8): 1245 -- 1251.
[8] 王菁. 光学区雷达目标散射中心提取及其应用研究[D]. 南京: 南京航空航天大学, 2010.
[9] YANG Z L, FANG D G, SHENG W X. Frequency Extrapolation by Genetic Algorithm Based on GTD Model for Radar Cross Section[J]. Chinese Journal of Electronics, 2001, 10(4): 552-556.
[10] 邱志强. 基于空间谱估计的雷达目标散射中心提取研究[D]. 成都: 电子科技大学, 2016.
[11] BHALLA R, LING H. Three-Dimensional Scattering Center Extraction Using the Shooting and Bouncing Ray Technique[J]. IEEE Transactions on Antennas & Propagation, 1996, 44(11): 1445-1453.
[12] 闫华, 张磊, 陆金文等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370-381.
[13] 陆金文, 闫华, 张磊等. 基于弹跳射线技术的三维GTD模型构建方法[J]. 系统工程与电子技术, 2021, 43(8): 2028-2036.
[14] BHALLA R, MOORE J, LING H. A global scattering center representation of complex targets using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas & Propagation, 1997, 45(12): 1850-1856.
[15] ZHOU J X, ZHAO H Z, SHI Z G, et al. Global scattering center model extraction of radar targets based on wideband measurements[J]. IEEE Trans. on Antennas & Propagation, 2008, 56(7): 2051-2060.
[16] ZHOU J X, SHI Z G, FU Q. Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(3): 1638-1655.
[17] HU J M, WEI W, ZHAI Q L, et al. Global scattering center extraction for radar targets using a modified RANSAC method[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(8): 3573-3586.
[18] GUO K Y, LI Q F, SHENG X Q, et al. Sliding scattering center model for extended streamlined targets[J]. Progress in Electromagnetics Research, 2013, 139(3): 499-516.
[19] ZHOU Y. High Frequency electromagnetic scattering prediction and scattering feature extraction[D]. Austin : The University of Texas at Austin, 2005.
[20] RAYNAL A M. Feature-Based Exploitation of Multidimensional Radar Signatures[D]. Austin: The University of Texas at Austin, 2008.
[21] 周哲夫. 典型体散射中心参数化模型重构方法及其应用[D]. 北京:中国航天科工二院研究生院, 2016.
[22] 闫华. 目标电磁散射参数化表达与建模方法研究[D]. 北京:中国传媒大学, 2020.
[23] PEREZ J, CATEDRA M F. Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces[J]. IEEE Transactions Antennas & Propagation, 1994, 42(10): 1404–1411.
[24] JACKSON J A, RIGLING B D, MOSES R L. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(2): 525-541.
[25] Wang Y, Jiang Y, Wu Y. Spectral Clustering on Multiple Manifolds. IEEE Transactions on Neural Networks, 2011, 22(7): 1149-1161.
[26] LING H, CHOU R C, LEE S W. Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions Antennas & Propagation, 1989, 37(2): 194-205.
[27] BHALLA R, LING H. A fast algorithm for signature prediction and image formation using the shooting and bouncing ray technique[J]. IEEE Transactions Antennas & Propagation, 1995, 43(7): 727-731.
[28] TSAO J, STEINBERG B D. Reduction of Sidelobe and Speckle Artifacts in Microwave Imaging: The CLEAN Technique[J]. IEEE Transactions on Antennas & Propagation, 1988, 36(4): 543-556.
Copyright © 2025 闫华, 陆金文, 殷红成

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License