基于 RM 核函数的毫米波雷达非视距目标稀疏成像方法
Journal: 空天科技 DOI: 10.12238/ast.v1i1.13700
Abstract
毫米波雷达成像因具备波长短、分辨率高、功耗低等优势,在全天时全天候的复杂城市环境感知中有重要的应用前景。然而,毫米波雷达成像技术如将压缩感知稀疏成像方法直接应用于NLOS场景,会出现数据计算量大和硬件存储需求高等问题。针对非视距目标稀疏成像方法中时间和空间复杂度高的问题,该研究提出了一种基于RM核函数的毫米波雷达非视距目标稀疏成像方法。首先,通过非视距三维典型场景下成像几何模型,建立非视距回波信号模型,并推导了非视距成像的理论分辨率;其次,通过初步二维成像获取建筑布局先验信息,并利用基于RM核函数的快速迭代阈值收缩成像算法完成了非视距目标成像和位置校正;最后,介绍了1比特量化技术,并分析其对非视距成像带来的影响。实际实验分析了所提算法的成像性能,结果表明,所提算法相较于正交匹配追踪算法,在保证成像质量的同时可以大大缩短成像时间。此外,所提算法利用1比特量化的回波数据可实现对非视距目标的有效成像,显著降低数据存储和传输成本。
Keywords
非视距成像;毫米波雷达;RM核函数;压缩感知;1比特量化
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] KONG L J, GUO S S, CHEN J H, et al. Review and prospect of multipath exploitation radar target detection technology[J]. Journal of Radars, 2023, 13(1): 23-45. (孔令讲, 郭世盛, 陈家辉, 等. 多径利用雷达目标探测技术综述与展望[J]. 雷达学报, 2023, 13(1): 23-45.)
[2] SUME A, GUSTAFSSON M, JÄNIS A, et al. Radar detection of moving objects around corners[C]//Radar Sensor Technology XIII. SPIE, 2009, 7308: 282-299.
[3] DEIANA D, KOSSEN A S, VAN ROSSUM W L. Multipath exploitation in an urban environment using a MIMO surveillance radar[C]//11th International Radar Symposium. IEEE, 2010: 1-4.
[4] RABASTE O, COLIN-KOENIGUER E, POULLIN D, et al. Around-the-corner radar: detection of a human being in non-line of sight[J]. IET Radar, Sonar & Navigation, 2015, 9(6): 660-668.
[5] HE J, TERASHIMA S, YAMADA H, et al. Diffraction signal-based human recognition in non-line-of-sight (NLOS) situation for millimeter wave radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4370-4380.
[6] WU P, CHEN J, GUO S, et al. NLOS positioning for building layout and target based on association and hypothesis method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-13.
[7] CHEN J, ZHANG Y, GUO S, et al. Joint estimation of NLOS building layout and targets via sparsity-driven approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[8] LIU X, WEI S, WEI J, et al. Non-line-of-sight radar 3-D imaging via sparse reconstruction[C]//2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2021: 1-4.
[9] WEI S, WEI J, LIU X, et al. Nonline-of-sight 3-D imaging using millimeter-wave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-18.
[10] CUI Y, TRICHOPOULOS G C. 3D non-line-of-sight terahertz imaging using mirror folding[C]//2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 2022: 89-90.
[11] YANIK M E, TORLAK M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7: 31801-31819.
[12] WEI J S. Research on high-precision 3D imaging technology for non-line-of-sight millimeter wave radar[D]. University of Electronic Science and Technology of China, 2022. (韦金杉. 非视距毫米波雷达高精度三维成像技术研究[D]. 电子科技大学, 2022.)
[13] LIU X Y. Research on high-precision 3D SAR imaging technology for non-line-of-sight[D]. University of Electronic Science and Technology of China, 2023. (刘欣远. 非视距三维SAR高精度成像技术研究[D]. 电子科技大学, 2023.)
[14] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[15] WEI S J. Research on sparse imaging technology for linear array 3D synthetic aperture radar[D]. University of Electronic Science and Technology of China, 2013. (韦顺军. 线阵三维合成孔径雷达稀疏成像技术研究[D]. 电子科技大学, 2013.)
[16] YANIK M E, TORLAK M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7: 31801-31819.
[17] WANG M, WEI S, LIANG J, et al. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-17.
[18] GE S, SONG S, FENG D, et al. Efficient near-field millimeter-wave sparse imaging technique utilizing one-bit measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2024.
[2] SUME A, GUSTAFSSON M, JÄNIS A, et al. Radar detection of moving objects around corners[C]//Radar Sensor Technology XIII. SPIE, 2009, 7308: 282-299.
[3] DEIANA D, KOSSEN A S, VAN ROSSUM W L. Multipath exploitation in an urban environment using a MIMO surveillance radar[C]//11th International Radar Symposium. IEEE, 2010: 1-4.
[4] RABASTE O, COLIN-KOENIGUER E, POULLIN D, et al. Around-the-corner radar: detection of a human being in non-line of sight[J]. IET Radar, Sonar & Navigation, 2015, 9(6): 660-668.
[5] HE J, TERASHIMA S, YAMADA H, et al. Diffraction signal-based human recognition in non-line-of-sight (NLOS) situation for millimeter wave radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4370-4380.
[6] WU P, CHEN J, GUO S, et al. NLOS positioning for building layout and target based on association and hypothesis method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-13.
[7] CHEN J, ZHANG Y, GUO S, et al. Joint estimation of NLOS building layout and targets via sparsity-driven approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
[8] LIU X, WEI S, WEI J, et al. Non-line-of-sight radar 3-D imaging via sparse reconstruction[C]//2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2021: 1-4.
[9] WEI S, WEI J, LIU X, et al. Nonline-of-sight 3-D imaging using millimeter-wave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-18.
[10] CUI Y, TRICHOPOULOS G C. 3D non-line-of-sight terahertz imaging using mirror folding[C]//2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, 2022: 89-90.
[11] YANIK M E, TORLAK M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7: 31801-31819.
[12] WEI J S. Research on high-precision 3D imaging technology for non-line-of-sight millimeter wave radar[D]. University of Electronic Science and Technology of China, 2022. (韦金杉. 非视距毫米波雷达高精度三维成像技术研究[D]. 电子科技大学, 2022.)
[13] LIU X Y. Research on high-precision 3D SAR imaging technology for non-line-of-sight[D]. University of Electronic Science and Technology of China, 2023. (刘欣远. 非视距三维SAR高精度成像技术研究[D]. 电子科技大学, 2023.)
[14] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[15] WEI S J. Research on sparse imaging technology for linear array 3D synthetic aperture radar[D]. University of Electronic Science and Technology of China, 2013. (韦顺军. 线阵三维合成孔径雷达稀疏成像技术研究[D]. 电子科技大学, 2013.)
[16] YANIK M E, TORLAK M. Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data[J]. IEEE Access, 2019, 7: 31801-31819.
[17] WANG M, WEI S, LIANG J, et al. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-17.
[18] GE S, SONG S, FENG D, et al. Efficient near-field millimeter-wave sparse imaging technique utilizing one-bit measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2024.
Copyright © 2025 周意森, 郭世盛, 朱智豪, 崔国龙

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License