OTFS 在低轨卫星通信中的应用研究
Journal: 空天科技 DOI: 10.12238/ast.v1i1.13699
Abstract
随着6G时代空天地一体化通信的发展,低轨卫星通信以其全球覆盖和高移动性吸引了广泛关注。然而,传统正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)调制在面对低轨卫星高速运动引起的严重多普勒扩展时性能下降。正交时频空调制(Orthogonal Time Frequency and Space, OTFS)作为一种新型二维调制方案,将信息映射到时延-多普勒域,以其对高移动性信道的鲁棒性和时频分集能力成为低轨卫星通信的潜在解决方案。该研究综述了低轨卫星通信的特点与挑战;对比分析了OTFS与OFDM在低轨卫星通信中的性能及OTFS的技术原理和核心优势;讨论了卫星通信系统标准以及OTFS调制解调研究现状。最后,展望了OTFS在未来卫星通信领域的发展方向,如与大规模MIMO、深度学习信道预测相结合以及在6G空天地一体化通信网络(Space Air Ground Integrated Network, SAGIN)网络中的应用前景。
Keywords
正交时频空;低轨卫星通信;时延-多普勒域;空天地一体化
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] XU B Y, HAN M. Research progress on international satellite communication standards[J]. Information and Communications Technology and Policy, 2019, 305(11): 41-44. (徐冰玉, 韩淼. 国际卫星通信标准研究进展[J]. 信息通信技术与政策, 2019, No.305(11):41-44.)
[2] HE Y Z. Progress and analysis of international integrated space-terrestrial satellite communication standards[J]. Information and Communications Technology and Policy, 2018, 290(8): 1-6. (何异舟. 国际天地融合的卫星通信标准进展与分析[J]. 信息通信技术与政策, 2018, No.290(8:1-6.)
[3] MONK A, HADANI R, TSATSANIS M, et al. OTFS-orthogonal time frequency space[J]. arXiv preprint, 2016.
[4] FARHANG A, REZAZADEHREYHANI A, DOYLE L E, et al. Low complexity modem structure for OFDM based orthogonal time frequency space modulation[J]. IEEE Wireless Communications Letters, 2017, 7(3): 344-347.
[5] REZAZADEHREYHANI A, FARHANG A, JI M, et al. Analysis of discrete-time MIMO OFDM-based orthogonal time frequency space modulation[C]//IEEE International Conference on Communications (ICC). Kansas City, MO, USA, 2018: 1-6.
[6] NIMR A, CHAFII M, MATTHE M, et al. Extended GFDM framework: OTFS and GFDM comparison[C]//IEEE Global Communications Conference (GLOBECOM). Abu Dhabi, United Arab Emirates, 2018: 1-6.
[7] RAVITEJA P, HONG Y, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957-961.
[8] RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501-6515.
[9] LI L, LIANG Y, FAN P, et al. Low-complexity detection algorithms for OTFS under rapidly time-varying channel[C]//IEEE VTC. Apr. 2019: 1-5.
[10] SHARMA P K, YOGESH B, GUPTA D, et al. Performance analysis of IoT-based overlay satellite-terrestrial networks under interference[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3): 985-1001.
[11] RAVITEJA P, PHAN K T, HONG Y. Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906-4917.
[2] HE Y Z. Progress and analysis of international integrated space-terrestrial satellite communication standards[J]. Information and Communications Technology and Policy, 2018, 290(8): 1-6. (何异舟. 国际天地融合的卫星通信标准进展与分析[J]. 信息通信技术与政策, 2018, No.290(8:1-6.)
[3] MONK A, HADANI R, TSATSANIS M, et al. OTFS-orthogonal time frequency space[J]. arXiv preprint, 2016.
[4] FARHANG A, REZAZADEHREYHANI A, DOYLE L E, et al. Low complexity modem structure for OFDM based orthogonal time frequency space modulation[J]. IEEE Wireless Communications Letters, 2017, 7(3): 344-347.
[5] REZAZADEHREYHANI A, FARHANG A, JI M, et al. Analysis of discrete-time MIMO OFDM-based orthogonal time frequency space modulation[C]//IEEE International Conference on Communications (ICC). Kansas City, MO, USA, 2018: 1-6.
[6] NIMR A, CHAFII M, MATTHE M, et al. Extended GFDM framework: OTFS and GFDM comparison[C]//IEEE Global Communications Conference (GLOBECOM). Abu Dhabi, United Arab Emirates, 2018: 1-6.
[7] RAVITEJA P, HONG Y, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957-961.
[8] RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501-6515.
[9] LI L, LIANG Y, FAN P, et al. Low-complexity detection algorithms for OTFS under rapidly time-varying channel[C]//IEEE VTC. Apr. 2019: 1-5.
[10] SHARMA P K, YOGESH B, GUPTA D, et al. Performance analysis of IoT-based overlay satellite-terrestrial networks under interference[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3): 985-1001.
[11] RAVITEJA P, PHAN K T, HONG Y. Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906-4917.
Copyright © 2025 徐川, 王振永, 董开原, 赵开元

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License