基于多样性特征与层次聚类的肺野自动分割算法
Journal: Advances in Computer and Autonomous Intelligence Research DOI: 10.12238/acair.v3i4.17877
Abstract
胸部X射线(Chest X-Ray,CXR)图像中肺野的自动分割对于肺部疾病的筛查与诊断具有重要意义。然而,CXR为投影成像,结构复杂、重叠多、边界差、自动分割难,手动勾画耗时且一致性差,故需鲁棒自动化分割方法。但深度学习黑箱性强、泛化差、计算要求高,传统无监督方法对特征与边界刻画不足。为此,本文提出融合超像素、多样性特征工程与层次聚类的分割新方法。该方法通过超像素分割降低数据维度,结合多尺度滤波、纹理分析与邻域统计增强特征判别能力,经贪心策略筛选特征以提升泛化能力与聚类效率,最终通过层次聚类合并区域并优化边界,提升分割精度与一致性。实验显示,该方法在多个公开数据集上表现优异,IoU达0.8791,优于图像检索加配准(0.8634)及OGD特征结合模糊聚类(0.7921)。
Keywords
超像素分割;多样性特征提取;层次聚类
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] ARRIETA A B,DIAZ-RODRIGUEZ N,DEL SER J,et al.Explain
[2] ACHANTA R,SHAJI A,SMITH K,et al.Slic superpixels compa
[3] VAN GINNEKEN B,STEGMANN M B, LOOG M.Segmentation of anatomical structures in chest radiographs using supervised methods:a comparative study on a public database[J].Medical Image Analysis,2006,10(1):19-40.
[4] IBRAGIMOV B, LIKAR B,PERNUš F,et al.Fusing shape infor
[5] XU Y,VAN GINNEKEN B, SHIRAISHI J,et al.An edge-region force guided active shape approach for automatic lung field detection in chest radiographs[J].Medical Image Analysis,2012,
[6] LEE J,LEE H,PARK H,et al.A game-theoretic framework for landmark-based image segmentation[J]. IEEE Transactions on Image Processing,2016,25(6):2795-2807.
[7] CANDEMIR S,JAEGER S,PALANIAPPAN K,et al.Lung segment
[8] ZHOU Z,SHIN J,ZHANG Y,et al.Hierarchical lung field seg
[9] SHI Y,QI S,ZHU X,et al.Lung segmentation in chest radio
[2] ACHANTA R,SHAJI A,SMITH K,et al.Slic superpixels compa
[3] VAN GINNEKEN B,STEGMANN M B, LOOG M.Segmentation of anatomical structures in chest radiographs using supervised methods:a comparative study on a public database[J].Medical Image Analysis,2006,10(1):19-40.
[4] IBRAGIMOV B, LIKAR B,PERNUš F,et al.Fusing shape infor
[5] XU Y,VAN GINNEKEN B, SHIRAISHI J,et al.An edge-region force guided active shape approach for automatic lung field detection in chest radiographs[J].Medical Image Analysis,2012,
[6] LEE J,LEE H,PARK H,et al.A game-theoretic framework for landmark-based image segmentation[J]. IEEE Transactions on Image Processing,2016,25(6):2795-2807.
[7] CANDEMIR S,JAEGER S,PALANIAPPAN K,et al.Lung segment
[8] ZHOU Z,SHIN J,ZHANG Y,et al.Hierarchical lung field seg
[9] SHI Y,QI S,ZHU X,et al.Lung segmentation in chest radio
Copyright © 2025 曾昌剑
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
