攻防对抗视角下网络安全主动防御体系研究

Journal: Advances in Computer and Autonomous Intelligence Research DOI: 10.12238/acair.v3i2.13526

林飞

山东大学

Abstract

面向日益严峻的网络攻防对抗态势,在可信数据空间中保护人工智能系统安全成为重要挑战。传统纵深防御因防御能力固化、缺乏灵活性,难以应对高级持续性威胁等动态攻击。为此,本文研究一种面向大数据基于强化学习的自主演化大模型驱动主动防御体系。首先,构建主动防御的理论建模框架,将攻防过程建模为动态博弈,并采用深度强化学习求解最优防御策略,实现防御策略的持续优化与进化。其次,设计主动防御系统架构,融合大数据分析平台,利用大模型实时感知威胁、决策防御响应,并通过标准接口集成国产软硬件基础设施。在AI系统攻击场景进行对抗性实验,训练防御智能体自动识别并挫败攻击。

Keywords

网络安全;攻防对抗;主动防御

References

[1] S.Ennaji,F.D.Gaspari,D.Hitaj, A. Kbidi, and L. V. Mancini, “Adversarial Challenges in Network Intrusion Detection Syste ms: Research Insights and Future Prospects,”Oct.22,2024,arXiv: arXiv:2409.18736.doi:10.48550/arXiv.2409.18736.
[2] Z.Tan,S.P. Parambath, C. Anagnostopoulos, J. Singer, and A.K.Marnerides,“Advanced Persistent Threats Based on Supply Chain Vulnerabilities: Challenges, Solutions & Future Directi ons,” IEEE Internet of Things Journal, 2025, Accessed: May 04, 2025.[Online].Available:https://ieeexplore.ieee.org/abstract/document/10838587/.
[3] Y.Yang,N.B.Idris, C. Liu, H. Wu, and D. Yu, “A destructive active defense algorithm for deepfake face images,”PeerJ Co mputer Science,vol.10,p.e2356,2024.
[4] D.Reti,D.Fraunholz,K.Elzer,D.Schneider,and H.D.Schotten, “Evaluating Deception and Moving Target Defense with Network Attack Simulation,” in Proceedings of the 9th ACM Workshop on Moving Target Defense, Los Angeles CA USA: ACM, Nov.2022,pp.45-53.
[5] Dingkun Yu,Tao Li,Hengwei Zhang,Jihong Han,and Jindo ng Wang, “Active defense strategy selection based on static Bayesian game,” in Third International Conference on Cybers pace Technology (CCT 2015), Beijing, China: Institution of Eng ineering and Technology,2015,p.7.
[6] S.Huang,H.Zhang,J.Wang,and J.Huang,“Markov different ial game for network defense decision-making method,” IEEE Access,vol.6,pp.39621-39634,2018.
[7] A.McGibney,T.Ranathunga, and R.Pospisil,“SmartQC: An Extensible DLT-Based Framework for Trusted Data Workflows in Smart Manufacturing,”Feb.27,2024, arXiv:arXiv:2402.17868.
[8] J.-H. Cho et al., “Toward proactive, adaptive defense: A survey on moving target defense,”IEEE Communications Surveys & Tutorials,vol.22, no.1,pp.709-745,2020.
[9] R.Sun,Y.Zhu,J.Fei,and X.Chen,“A survey on moving target defense:Intelligently affordable,optimized and self-adaptive,” Applied Sciences,vol.13,no.9,p.5367,2023.
[10] D.P.Sharma,J.-H.Cho,T.J.Moore,F. F. Nelson, H. Lim, and D.S.Kim,“Random host and service multiplexing for moving target defense in software-defined networks,” in ICC 2019 -2019 IEEE International Conference on Communications (ICC), IEEE,2019,pp.1–6. Accessed: May 04, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8761496/
[11] K.Lye and J.M.Wing,“Game strategies in network secu rity,”IJIS,vol.4,no.1-2,pp.71-86,Feb.2005.
[12] D.Ramsey,“A Stackelberg Game based on the Secreta ry Problem: Optimal Response is History Dependent,” Sep. 06, 2024,arXiv:arXiv:2409.04153.
[13] M.Van Dijk,A. Juels, A. Oprea, and R. L. Rivest, “FlipIt: The Game of‘Stealthy Takeover,’”J Cryptol, vol.26,no.4,
[14] T.T.Nguyen and V.J.Reddi,“Deep reinforcement learn ing for cyber security,”IEEE Transactions on Neural Networ ks and Learning Systems,vol.34,no.8,pp.3779-3795,2021.

Copyright © 2025 林飞

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License