基于深度学习的心血管病急诊患者运动处方开发与分析

Journal: Advances in Computer and Autonomous Intelligence Research DOI: 10.12238/acair.v2i4.10292

孙妍, 张瑾, 曾霞, 冯卢

四川省医学科学院•四川省人民医院(电子科技大学附属医院)

Abstract

目的:利用深度学习技术为急诊心血管疾病(CVD)患者开发个性化运动处方。方法:通过三维度健康评估方法生成个性化运动处方。利用CNN和RNN组合生成深度学习模型,选取200名急诊CVD患者,随机分为实验组和对照组。实验为期12周,每4周评估一次。结果:在深度学习模型训练后,运动处方信息归类准确度达88.5%,其中实验组在心率、收缩压、6分钟步行测试(6MWT)和最大摄氧量(VO₂Max)等关键指标上显示出轻微的优势,特别是在收缩压和心率方面表现更为显著。结论:基于深度学习生成的个性化运动处方能够有效提升急诊CVD患者的心血管功能、运动耐力及依从性。

Keywords

心血管疾病;深度学习;运动处方;急诊

References

[1] WorldHealth Organization.Cardiovascular diseases (CVDs). WHO, 2021.
[2] Fletcher GF,Ades PA,Kligfield P,etal.Exercise standar ds for testing and training: a scientific statement from the American Heart Association[J]. Circulation. 2013;128(8):873 -934.
[3] Esteva A, Robicquet A,Ramsundar B,etal.A guide to deep learning in healthcare. Nature Medicine[J].2019;25(1):24-29.
[4] Benjamin EJ,Virani SS, Callaway CW, et al. Heart Disease and Stroke Statistics—2019Update:A Report From the Ameri can Heart Association. Circulation[J].2019;139(10).
[5] Fletcher GF,Ades PA,Kligfield P,etal.Exercise standar ds for testing and training: a scientific statement from the American Heart Association[J].Circulation.2013;128(8):873-934.
[6] Topol EJ.High-performance medicine: the convergence of human and artificial intelligence.Nature Medicine[J].2019; 25(1):44-56.
[7] Song X, Baghoolizadeh M, Alizadeh A, et al. Utilizing machine learning algorithms for prediction of the rheological behavior of ZnO (50%)-MWCNTs (50%)/Ethylene glycol (20%)- water (80%) nano-refrigerant[J].International Communicati ons in Heat and Mass Transfer,2024,156:107634.
[8] Miotto R,Wang F,Wang S,etal.Deep learning for health care: review, opportunities, and challenges[J]. Briefings in Bioinformatics.2018;19(6):1236-1246.

Copyright © 2024 孙妍, 张瑾, 曾霞, 冯卢

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License