Physical characterization of fourteen Brazilian hydrographic basins: proposition of the indicator of the average slope of the rivers and the coefficient of susceptibility to floods
Journal: Region - Water Conservancy DOI: 10.32629/rwc.v8i2.3765
Abstract
Morphometric parameters are highly relevant information for the physical characterization of river basins. This study physically characterized 14 southern Brazilian basins according to 10 morphometric parameters related to the order, shape, characteristics of the drainage system and slope of the basins, in addition to developing an analysis of their correlations. The methodology consisted of processing the digital elevation model, made available by the TOPODATA project of the National Institute for Space Research (2008), with a spatial resolution of 30 meters, complemented with information from the Google Earth GIS. As a result, in addition to the characterization and classification of the basins, two new morphometric parameters were proposed. The first, called the indicator of the average slope of the rivers, demonstrated good performance in simultaneously representing the slope of the basin and the sinuosity coefficient of the rivers, synthetically equivalent to the average slope of all the rivers in the basin. The second was the flood susceptibility coefficient, which represents the set of all the spatial characteristics of the basin and its rivers. The results suggest that the latter is an excellent indicator for analyzing flood risk in small and medium-sized basins. Classification criteria were also proposed for the parameters runoff length, roughness coefficient, axial slope and indicator of the average slope of rivers and flood susceptibility coefficient.
Keywords
morphometry; hydrographic basin; flood
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] AGARWAL, C.S. Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U. P. Journal of the Indian Society of Remote Sensing, v. 26, n. 4, p. 169-175, 1998. https://doi.org/10.1007/BF02990795
[2] AL-GHAMDI, K.A.; ELZAHRANY, R.A.; MIRZA, M.N.; DAWOD, G.M. Impacts of urban growth on flood hazards in Makkah City, Saudi Arabia. International Journal of Water Resources and Environmental Engineering, v. 4, n. 2, p. 23-34, 2012. https://doi.org/10.5897/IJWREE11.128
[3] AL SAUD, M. Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. Journal of Water Resource and Protection, v. 2, n. 9, p. 839-847, 2010. https://doi.org/10.4236/jwarp.2010.29099
[4] BAJRACHARYA, P.; JAIN, S. Estimation of watershed width function: a statistical approach using LiDAR data. Stochastic Environmental Research and Risk Assessment, v. 34, n. 10, p. 1997-2011, 2020. https://doi.org/10.1007/
[5] BASIHY, G.; MASOUD, M.; BAJABAA, S.; ZAIDY, S. Hydrologic atlas for of Makkah Al-Mokramah region. Jeddah: Water Research Center, King Abdulaziz University, 2017.
[6] BAUER, L. Estimação do Coeficiente de Correlação de Spearman Ponderado. Dissertação (Mestrado)-Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, 2007.
[7] BELTRAME, A.V. Diagnóstico do meio ambiente físico de bacias hidrográficas: modelo de aplicação. Florianópolis: UFSC, 1994. 112 p.
[8] BIRON, P.M.; CHONÉ, G.; BUFFIN-BÉLANGER, T.; DEMERS, S.; OLSEN, T. Improvement of streams hydro-geomorphological assessment using LiDAR DEMs. Earth Surface Processes and Landforms, v. 38, n. 15, p. 1808-1821, 2013. https://doi.org/10.1002/esp.3425
[9] BISHT, S.; CHAUDHRY, S.; SHARMA, S.; SONI, S. Assessment of flash flood hazard zonation through geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environment, v. 12, p. 35-47, 2018. https://doi.org/10.1016/j. rsase.2018.09.001
[10] CARVALHO, D.F.; SILVA, L.D.B. Hidrologia. Rio de Janeiro: Universidade Federal Rural do Rio de Janeiro, 2006.
[11] CHAVAN, V.T.; GADGE, P.S. Morphometric analysis of Junana Mini Watershed Nandgoan (Kh.), Dist. Amravati, Maharashtra using GIS. International Journal of Science, Environment and Technology, v. 2, n. 5, p. 1072-1079, 2013.
[12] CHOPRA, R.; DHIMAN, R.D.; SHARMA, P.K. Morphometric analysis of subwatersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, v. 33, n. 4, p. 531-539, 2005. https://doi.org/10.1007/BF02990738
[13] CHRISTOFOLETTI, A. Geomorfologia. São Paulo: Edgard Blucher e EDUSP, 1974. DAR, R.A.; CHANDRA, R.; ROMSHOO, S.A. Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. Journal of Mountain Science, v. 10, n. 1, p. 731-741, 2013. https://doi.org/10.1007/s11629-013-2494-
[14] DAWOD, G.M.; MIRZA, M.N.; KHALID, A.; AL-GHAMDI, K.A. GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. Journal of Geographic Information Systems, v. 3, n. 3, p. 217-223, 2011. https://doi. org/10.4236/jgis.2011.33019
[15] DEGETTO, M.; GREGORETTI, C.; BERNARD, M. Comparative analysis ft wo differences between using LiDAR and contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites. Frontiers in Earth Science, v. 3, n. 21, 2015. https://doi.org/10.3389/feart.2015.00021
[16] EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (EMBRAPA). Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). Súmula da 10. Reunião Técnica de Levantamento de Solos. Rio de Janeiro: Embrapa, 1979.
[17] EZE, E. B.; JOEL, E. Parâmetros morfométricos da bacia do rio Calabar: implicações para os processos hidrológicos. Journal of Geography and Geology, v. 2, n. 1, p. 19-26, 2010.
[18] GEENA, G.B.; BALLUKRAYA, P.N. Morphometric analysis of Korattalaiyar River Basin, Tamil Nadu, India: a GIS approach. International Journal of Geomatics and Geosciences, v. 2, n. 2, p. 383-391, 2011.
[19] GROHMANN, C.H.; RICCOMINI, C.; ALVES, F.M. SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Computers & Geosciences, v. 33, n. 1, p. 10-19, 2007. https://doi.org/10.1016/j. cageo.2006.05.002
[20] HAMDAN, A.; KHOZYEM, H. Análise morfométrica, estatística e de risco usando dados ASTER e técnica GIS da bacia hidrográfica WADI El-Mathula, Qena, Egito. Arabian Journal of Geosciences, v. 11, n. 22, 2018. https://doi. org/10.1007/s12517-018-4068-3
[21] HORTON, R.E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, v. 56, n. 3, p. 275-370, 1945. https://doi. org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
[22] HORTON, R.E. The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union, v. 14, n. 1, p. 446-460, 1933. https://doi. org/10.1029/TR014i001p00446
[23] IFABIYI, I.P. A reduced rank model of drainage basin response to runoff in Upper Kaduna catchment of Northern Nigeria. Geo-Studies Forum, v. 2, n. 1, p. 109-117, 2004.
[24] JAIN, V.; SINHA, R. Derivation of Unit Hydrograph From GIUH Analysis For A Himalayan River. Water Resources Management, v. 17, n. 5, p. 355-375, 2003. https://doi.org/10.1023/A:1025884903120
[25] KALIRAJ, S.; CHANDRASEKAR, N.; MAGESH, N.S. Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari District, South west coast of Tamil Nadu, India, using remote sensing and GIS. Environmental Earth Science, v. 73, p. 7375-7401, 2015. https://doi.org/10.1007/x12665- 014-3914-1
[26] KALIRAJ, S.; MEENAKSHI, S.M.; MALAR, V.K. Application of Remote sensing in Forest cover change detection using Geo statistical change detection matrices -A case study in Devampatti RF, Tamil Nadu. Nature Environment & Pollution Technology, v. 11, n. 2, p. 261-269, 2012.
[27] KOULI, M.; VALLIANATOS, F.; SOUPIOS, P.; ALEXAKIS, D. GIS-based morphometric analysis ft wo major watersheds, Western Crete, Greece. Journal of Environmental Hydrology, v. 15, n. 1, p. 1-17, 2007.
[28] KRISHNAMURTHY, J.; MANI, A.; JAYARAMAN, V.; MANIVEL, M. Groundwater resources development in hard rock terrain-an approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, v. 2, n. 3-4, p. 204-215, 2000. https://doi. org/10.1016/S0303-2434(00)85015-1
[29] KUMAR, R.; KUMAR, S.; LOHNI, A.K.; NEEMA, R.K.; SINGH, A.D. Evaluation of geomorphological characteristics of a catchment using GIS. GIS India, v. 9, p. 13-17, 2000.
[30] LEOPOLD, L.B.; WOLMAN, M.G. River channel patterns: braided, meandering, and straight. US Geological Survey Professional Paper, 282-B, 1957.
[31] LIU, X.; ZHANG, Z. Drainage network extraction using LiDAR derived DEM in volcanic plains. Area, v. 43, n. 1, p. 42-52, 2011.
[32] LOLLO, J.A. O uso da técnica de avaliação do terreno no processo de elaboração do mapeamento geotécnico: sistematização e aplicação na quadrícula de Campinas. 1995. Tese (Doutorado em Geotecnia) -Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1995.
[33] LORENZON, A.S.; DIAS, H.C.; TONELLO, K.C. Escoamento superficial da água da chuva em um fragmento florestal de Mata Atlântica, Viçosa-MG. Revista Brasileira de Agropecuária Sustentável, v. 5, n. 1, p. 50-58, 2015. https://doi. org/10.21206/rbas.v5i1.316
[34] MAGESH, N.S.; CHANDRASEKAR, N. Avaliação morfométrica baseada em modelo GIS da sub-bacia de Tamiraparani, distrito de Tirunelveli, Tamil Nadu, Índia. Arabian Journal of Geosciences, v. 7, p. 131-141, 2012. https://doi. org/10.1007/s12517-012-0742-z
[35] MAGESH, N.S.; CHANDRASEKAR, N.; KALIRAJ, S. Uma ferramenta de extração automatizada baseada em GIS para a análise de morfometria de bacia. Bonfring International Journal of Industrial Engineering and Management Science, v. 2, n. 1, p. 32-35, 2012.
[36] MESA, L.M. Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology, v. 50, n. 8, p. 1235-1242, 2006. https://doi. org/10.1007/s00254-006-0297-y
[37] MESQUITA, M.; CASTELO BRANCO, V.T.F.; SOARES, J.B. Utilização dos testes estatísticos de Kolmogorov-Smirnov e Shapiro-Wilk para verificação da normalidade para materiais de pavimentação. Transportes, v. 21, n. 1, p. 59-66, 2013. https://doi.org/10.4237/transportes.v21i1.566
[38] MILLER, V.C. A quantitative geomorphic study of drainage basin characteristics on the Clinch Mountain area. Virginia and Tennessee, project NR, vol Tech Rep 3. Nova York: Columbia University, Department of Geology, 1953.
[39] MOUSSA, R. On morphometric properties of basins, scale effects and hydrological response. Hydrological Processes, v. 17, n. 1, p. 33-58, 2003. https://doi.org/10.1002/hyp.1114
[40] NAG, S.K. Morphometric analysis using remote sensing techniques in the Chaka subbasin Purulia district West Bengal. Journal of the Indian Society of Remote Sensing, v. 26, n. 1-2, p. 69-76, 1998. https://doi.org/10.1007/BF03007341
[41] NARENDRA, K.; NAGESWARA, R.K. Morphometry of the Meghadrigedda watershed, Visakhapatnam district, Andhra Pradesh using GIS and Resourcesat data. Journal of the Indian Society of Remote Sensing, v. 34, n. 2, p. 101-110, 2006. http://dx.doi.org/10.1007/BF02991815
[42] NAUTIYAL, M.D. Morphometric analysis of a drainage basin, district Dehradun, Uttar Pradesh. Journal of the Indian Society of Remote Sensing, v. 22, n. 4, p. 251-261, 1994. https://doi.org/10.1007/BF03026526
[43] OBI REDDY, G.P.; MAJI, A.K.; GAJBHIYE, K.S. GIS for morphometric analysis of drainage basins. GIS India, v. 11, p. 9-14, 2002.
[44] OKOKO, E.E.; OLUJJINMI, J.A.B. The role of geomorphic features in urban flooding: the case of Ala River in Akure, Nigeria. International Journal of Environmental Issues, v. 1, n. 1, p. 192-201, 2003.
[45] PARETA, K.; PARETA, U. Quantitative geomorphological analysis of a watershed of a Ravi River Basin, H.P. India. International Journal of Remote Sensing and GIS, v. 1, n. 1, p. 41-56, 2012.
[46] RAWAT, K.S.; MISHRA, A.K. Evaluation of relief aspects morphometric parameters derived from different sources of DEMs and its effects over time of concentration of runoff (TC). Earth Science Informatics, v. 9, n. 4, p. 409-424, 2016. https://doi.org/10.1007/s12145-016-0261-7
[47] RAWAT, K.S.; MISHRA, A.K.; TRIPATHI, V.K. Hydro-morphometrical analyses of sub-himalyan region in relation to small hydro-electric power. ArabianJournal of Geosciences, v. 6, n. 8, p. 2889-2899, 2012. https://doi.org/10.1007/ s12517-012-0586-6
[48] RIGON, R.; BANCHERI, M.; FORMETTA, G.; DE LAVENNE, A. The geomorphological unit hydrograph from a historical-critical perspective. Earth Surface Processes and Landforms, v. 41, n. 1, p. 27-37, 2016. https://doi. org/10.1002/esp.3855
[49] ROMSHOO, S.A.; BHAT, S.A.; RASHID, I. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin. Journal of Earth System Science, v. 121, n. 3, p. 659-686, 2012. https://doi.org/10.1007/s12040-012-0192-8
[50] SAHOO, R.; JAIN, V. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data. Computaters & Geoscience, v. 111, n. 268, p. 78-86, 2018. https:// doi.org/10.1016/j.cageo.2017.10.001
[51] SANTOS, G.O.; HERNANDEZ, F.B.T. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 1, p. 60-68, 2013. https://doi. org/10.1590/S1415-43662013000100009
[52] SANTOS, G.O.; SILVA, A.A.; BRAZ, A.R.C., CARNEIRO, F.M. Morphometric characterization of hydrographic bodies inserted in the Municipality of Rio Verde, Goiás, as a tool for urban and agricultural planning. Geografia Ensino & Pesquisa, v. 22, n. 17, p. e17, 2018.
[53] SCHUMM, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, v. 67, n. 5, p. 597-646, 1956.
https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
[54] SHAPIRO, S.S.; WILK, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika Trust, v. 52, n. 3-4, p. 591-609, 1965. https:// doi.org/10.2307/2333709
[55] SINGH, V.P.; CUI, H.; BYRD, A. Sediment Graphs Based on Entropy Theory. Journal of Hydrologic Engineering, v. 20, n. 6, 2014. https://doi.org/10.1061/ (ASCE)HE.1943-5584.0001068
[56] SONI, S. Assessment of morphometric characteristics of Chakrar Watershed in Madhya Pradesh, India using geospatial technique. Applied Water Science, v. 7, n. 5, 2017. https://doi.org/10.1007/s13201-016-0395-2
[57] SONI, S.K.; TRIPATHI, S.; MAURYA, A.K. GIS based morphometric characterization of mini-watershed-Rachhar Nala of Anuppur District Madhya Pradesh. International Journal of Advanced Technology and Engineering Research, v. 3, n. 3, p. 32-38, 2013.
[58] SOUZA, C.F.; PERTILLE, C.T.; CORRÊA, B.J.S.; VIEIRA, F.S. Caracterização morfométrica da bacia hidrográfica do rio Ivaí-Paraná. Geoambiente Online, n. 29, p. 93-110, 2017. https://doi.org/10.5216/revgeoamb.v0i29.50602
[59] STRAHLER, A.N. Dynamics basis of geomorphology. GSA Bulletin, v. 63, n. 9, p. 923-938, 1952. https://doi.org/10.1130/0016- 7606(1952)63[923:DBOG]2.0.CO;2
[60] STRAHLER, A.N. Quantitative Analysis of Watershed Geomorphology. Eos, Transactions American Geophysical Union, v. 38, n. 6, p. 913-920, 1957. https://doi.org/10.1029/TR038i006p00913
[61] STRAHLER, A.N. Quantitative geomorphology. In: FAIRBRIDGE, R.W. (org.). The encyclopedia of geomorphology. Nova York: Reinhold Book Crop, 1968.
[62] STRAHLER, A.N. Quantitative geomorphology of drainage basins and channel networks. In: CHOW, V.T. (org.). Handbook of applied hydrology. Nova York: McGraw Hill Book Company, 1964. p. 4-11.
[63] TRIPATHI, S.; SONI, S.K.; MAURYA, A.K. Morphometric characterization and prioritization of sub-watershed of Seoni River in Madhya Pradesh through remote sensing and GIS technique. International Journal of Remote Sensing & Geoscience, v. 2, n. 3, p. 46-54, 2013.
[64] VANDANA, M. Morphometric analysis and watershed prioritization: a case study of Kabani River Basin, Wayanad District, Kerala, India. Indian Journal of Geo-Marine Sciences, v. 42, n. 2, p. 211-222, 2013.
[65] VILELLA, S.M.; MATTOS, A. Hidrologia aplicada. São Paulo: McGraw Hill do Brasil, 1975
[66] VITTALA, S.S.; GOVINDAIAH, S.; HONNE GOWDA, H. Morphometric analysis of sub-watersheds in the Pavagada Area of Tumkur District, South India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, v. 32, n. 4, p. 351-362, 2004. https://doi.org/10.1007/ BF03030860
[67] WU, Q.; LANE, C.R. Delineating wetland catchments and modeling hydrologic connectivity using LiDAR data and aerial imagery. Hydrological and Earth System Sciences, v. 21, n. 7, p. 3579-3595, 2017. https://doi. org/10.5194/hess-21-3579-2017
[68] YANG, P.; AMES, D.P.; FONSECA, A.; ANDERSON, D.; SHRESTHA, R.; GLENN, N.F.; CAO, Y. What is the effect of LiDAR-derived DEM resolution on largescale watershed model results? Environmental Modelling and Software, v. 58, p. 48-57, 2014. https://doi.org/10.1016/j.envsoft.2014.04.005
[2] AL-GHAMDI, K.A.; ELZAHRANY, R.A.; MIRZA, M.N.; DAWOD, G.M. Impacts of urban growth on flood hazards in Makkah City, Saudi Arabia. International Journal of Water Resources and Environmental Engineering, v. 4, n. 2, p. 23-34, 2012. https://doi.org/10.5897/IJWREE11.128
[3] AL SAUD, M. Assessment of flood hazard of Jeddah area 2009, Saudi Arabia. Journal of Water Resource and Protection, v. 2, n. 9, p. 839-847, 2010. https://doi.org/10.4236/jwarp.2010.29099
[4] BAJRACHARYA, P.; JAIN, S. Estimation of watershed width function: a statistical approach using LiDAR data. Stochastic Environmental Research and Risk Assessment, v. 34, n. 10, p. 1997-2011, 2020. https://doi.org/10.1007/
[5] BASIHY, G.; MASOUD, M.; BAJABAA, S.; ZAIDY, S. Hydrologic atlas for of Makkah Al-Mokramah region. Jeddah: Water Research Center, King Abdulaziz University, 2017.
[6] BAUER, L. Estimação do Coeficiente de Correlação de Spearman Ponderado. Dissertação (Mestrado)-Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, 2007.
[7] BELTRAME, A.V. Diagnóstico do meio ambiente físico de bacias hidrográficas: modelo de aplicação. Florianópolis: UFSC, 1994. 112 p.
[8] BIRON, P.M.; CHONÉ, G.; BUFFIN-BÉLANGER, T.; DEMERS, S.; OLSEN, T. Improvement of streams hydro-geomorphological assessment using LiDAR DEMs. Earth Surface Processes and Landforms, v. 38, n. 15, p. 1808-1821, 2013. https://doi.org/10.1002/esp.3425
[9] BISHT, S.; CHAUDHRY, S.; SHARMA, S.; SONI, S. Assessment of flash flood hazard zonation through geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environment, v. 12, p. 35-47, 2018. https://doi.org/10.1016/j. rsase.2018.09.001
[10] CARVALHO, D.F.; SILVA, L.D.B. Hidrologia. Rio de Janeiro: Universidade Federal Rural do Rio de Janeiro, 2006.
[11] CHAVAN, V.T.; GADGE, P.S. Morphometric analysis of Junana Mini Watershed Nandgoan (Kh.), Dist. Amravati, Maharashtra using GIS. International Journal of Science, Environment and Technology, v. 2, n. 5, p. 1072-1079, 2013.
[12] CHOPRA, R.; DHIMAN, R.D.; SHARMA, P.K. Morphometric analysis of subwatersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, v. 33, n. 4, p. 531-539, 2005. https://doi.org/10.1007/BF02990738
[13] CHRISTOFOLETTI, A. Geomorfologia. São Paulo: Edgard Blucher e EDUSP, 1974. DAR, R.A.; CHANDRA, R.; ROMSHOO, S.A. Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India. Journal of Mountain Science, v. 10, n. 1, p. 731-741, 2013. https://doi.org/10.1007/s11629-013-2494-
[14] DAWOD, G.M.; MIRZA, M.N.; KHALID, A.; AL-GHAMDI, K.A. GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. Journal of Geographic Information Systems, v. 3, n. 3, p. 217-223, 2011. https://doi. org/10.4236/jgis.2011.33019
[15] DEGETTO, M.; GREGORETTI, C.; BERNARD, M. Comparative analysis ft wo differences between using LiDAR and contour-based DEMs for hydrological modeling of runoff generating debris flows in the Dolomites. Frontiers in Earth Science, v. 3, n. 21, 2015. https://doi.org/10.3389/feart.2015.00021
[16] EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (EMBRAPA). Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). Súmula da 10. Reunião Técnica de Levantamento de Solos. Rio de Janeiro: Embrapa, 1979.
[17] EZE, E. B.; JOEL, E. Parâmetros morfométricos da bacia do rio Calabar: implicações para os processos hidrológicos. Journal of Geography and Geology, v. 2, n. 1, p. 19-26, 2010.
[18] GEENA, G.B.; BALLUKRAYA, P.N. Morphometric analysis of Korattalaiyar River Basin, Tamil Nadu, India: a GIS approach. International Journal of Geomatics and Geosciences, v. 2, n. 2, p. 383-391, 2011.
[19] GROHMANN, C.H.; RICCOMINI, C.; ALVES, F.M. SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Computers & Geosciences, v. 33, n. 1, p. 10-19, 2007. https://doi.org/10.1016/j. cageo.2006.05.002
[20] HAMDAN, A.; KHOZYEM, H. Análise morfométrica, estatística e de risco usando dados ASTER e técnica GIS da bacia hidrográfica WADI El-Mathula, Qena, Egito. Arabian Journal of Geosciences, v. 11, n. 22, 2018. https://doi. org/10.1007/s12517-018-4068-3
[21] HORTON, R.E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, v. 56, n. 3, p. 275-370, 1945. https://doi. org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
[22] HORTON, R.E. The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union, v. 14, n. 1, p. 446-460, 1933. https://doi. org/10.1029/TR014i001p00446
[23] IFABIYI, I.P. A reduced rank model of drainage basin response to runoff in Upper Kaduna catchment of Northern Nigeria. Geo-Studies Forum, v. 2, n. 1, p. 109-117, 2004.
[24] JAIN, V.; SINHA, R. Derivation of Unit Hydrograph From GIUH Analysis For A Himalayan River. Water Resources Management, v. 17, n. 5, p. 355-375, 2003. https://doi.org/10.1023/A:1025884903120
[25] KALIRAJ, S.; CHANDRASEKAR, N.; MAGESH, N.S. Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari District, South west coast of Tamil Nadu, India, using remote sensing and GIS. Environmental Earth Science, v. 73, p. 7375-7401, 2015. https://doi.org/10.1007/x12665- 014-3914-1
[26] KALIRAJ, S.; MEENAKSHI, S.M.; MALAR, V.K. Application of Remote sensing in Forest cover change detection using Geo statistical change detection matrices -A case study in Devampatti RF, Tamil Nadu. Nature Environment & Pollution Technology, v. 11, n. 2, p. 261-269, 2012.
[27] KOULI, M.; VALLIANATOS, F.; SOUPIOS, P.; ALEXAKIS, D. GIS-based morphometric analysis ft wo major watersheds, Western Crete, Greece. Journal of Environmental Hydrology, v. 15, n. 1, p. 1-17, 2007.
[28] KRISHNAMURTHY, J.; MANI, A.; JAYARAMAN, V.; MANIVEL, M. Groundwater resources development in hard rock terrain-an approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, v. 2, n. 3-4, p. 204-215, 2000. https://doi. org/10.1016/S0303-2434(00)85015-1
[29] KUMAR, R.; KUMAR, S.; LOHNI, A.K.; NEEMA, R.K.; SINGH, A.D. Evaluation of geomorphological characteristics of a catchment using GIS. GIS India, v. 9, p. 13-17, 2000.
[30] LEOPOLD, L.B.; WOLMAN, M.G. River channel patterns: braided, meandering, and straight. US Geological Survey Professional Paper, 282-B, 1957.
[31] LIU, X.; ZHANG, Z. Drainage network extraction using LiDAR derived DEM in volcanic plains. Area, v. 43, n. 1, p. 42-52, 2011.
[32] LOLLO, J.A. O uso da técnica de avaliação do terreno no processo de elaboração do mapeamento geotécnico: sistematização e aplicação na quadrícula de Campinas. 1995. Tese (Doutorado em Geotecnia) -Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1995.
[33] LORENZON, A.S.; DIAS, H.C.; TONELLO, K.C. Escoamento superficial da água da chuva em um fragmento florestal de Mata Atlântica, Viçosa-MG. Revista Brasileira de Agropecuária Sustentável, v. 5, n. 1, p. 50-58, 2015. https://doi. org/10.21206/rbas.v5i1.316
[34] MAGESH, N.S.; CHANDRASEKAR, N. Avaliação morfométrica baseada em modelo GIS da sub-bacia de Tamiraparani, distrito de Tirunelveli, Tamil Nadu, Índia. Arabian Journal of Geosciences, v. 7, p. 131-141, 2012. https://doi. org/10.1007/s12517-012-0742-z
[35] MAGESH, N.S.; CHANDRASEKAR, N.; KALIRAJ, S. Uma ferramenta de extração automatizada baseada em GIS para a análise de morfometria de bacia. Bonfring International Journal of Industrial Engineering and Management Science, v. 2, n. 1, p. 32-35, 2012.
[36] MESA, L.M. Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology, v. 50, n. 8, p. 1235-1242, 2006. https://doi. org/10.1007/s00254-006-0297-y
[37] MESQUITA, M.; CASTELO BRANCO, V.T.F.; SOARES, J.B. Utilização dos testes estatísticos de Kolmogorov-Smirnov e Shapiro-Wilk para verificação da normalidade para materiais de pavimentação. Transportes, v. 21, n. 1, p. 59-66, 2013. https://doi.org/10.4237/transportes.v21i1.566
[38] MILLER, V.C. A quantitative geomorphic study of drainage basin characteristics on the Clinch Mountain area. Virginia and Tennessee, project NR, vol Tech Rep 3. Nova York: Columbia University, Department of Geology, 1953.
[39] MOUSSA, R. On morphometric properties of basins, scale effects and hydrological response. Hydrological Processes, v. 17, n. 1, p. 33-58, 2003. https://doi.org/10.1002/hyp.1114
[40] NAG, S.K. Morphometric analysis using remote sensing techniques in the Chaka subbasin Purulia district West Bengal. Journal of the Indian Society of Remote Sensing, v. 26, n. 1-2, p. 69-76, 1998. https://doi.org/10.1007/BF03007341
[41] NARENDRA, K.; NAGESWARA, R.K. Morphometry of the Meghadrigedda watershed, Visakhapatnam district, Andhra Pradesh using GIS and Resourcesat data. Journal of the Indian Society of Remote Sensing, v. 34, n. 2, p. 101-110, 2006. http://dx.doi.org/10.1007/BF02991815
[42] NAUTIYAL, M.D. Morphometric analysis of a drainage basin, district Dehradun, Uttar Pradesh. Journal of the Indian Society of Remote Sensing, v. 22, n. 4, p. 251-261, 1994. https://doi.org/10.1007/BF03026526
[43] OBI REDDY, G.P.; MAJI, A.K.; GAJBHIYE, K.S. GIS for morphometric analysis of drainage basins. GIS India, v. 11, p. 9-14, 2002.
[44] OKOKO, E.E.; OLUJJINMI, J.A.B. The role of geomorphic features in urban flooding: the case of Ala River in Akure, Nigeria. International Journal of Environmental Issues, v. 1, n. 1, p. 192-201, 2003.
[45] PARETA, K.; PARETA, U. Quantitative geomorphological analysis of a watershed of a Ravi River Basin, H.P. India. International Journal of Remote Sensing and GIS, v. 1, n. 1, p. 41-56, 2012.
[46] RAWAT, K.S.; MISHRA, A.K. Evaluation of relief aspects morphometric parameters derived from different sources of DEMs and its effects over time of concentration of runoff (TC). Earth Science Informatics, v. 9, n. 4, p. 409-424, 2016. https://doi.org/10.1007/s12145-016-0261-7
[47] RAWAT, K.S.; MISHRA, A.K.; TRIPATHI, V.K. Hydro-morphometrical analyses of sub-himalyan region in relation to small hydro-electric power. ArabianJournal of Geosciences, v. 6, n. 8, p. 2889-2899, 2012. https://doi.org/10.1007/ s12517-012-0586-6
[48] RIGON, R.; BANCHERI, M.; FORMETTA, G.; DE LAVENNE, A. The geomorphological unit hydrograph from a historical-critical perspective. Earth Surface Processes and Landforms, v. 41, n. 1, p. 27-37, 2016. https://doi. org/10.1002/esp.3855
[49] ROMSHOO, S.A.; BHAT, S.A.; RASHID, I. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin. Journal of Earth System Science, v. 121, n. 3, p. 659-686, 2012. https://doi.org/10.1007/s12040-012-0192-8
[50] SAHOO, R.; JAIN, V. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data. Computaters & Geoscience, v. 111, n. 268, p. 78-86, 2018. https:// doi.org/10.1016/j.cageo.2017.10.001
[51] SANTOS, G.O.; HERNANDEZ, F.B.T. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 1, p. 60-68, 2013. https://doi. org/10.1590/S1415-43662013000100009
[52] SANTOS, G.O.; SILVA, A.A.; BRAZ, A.R.C., CARNEIRO, F.M. Morphometric characterization of hydrographic bodies inserted in the Municipality of Rio Verde, Goiás, as a tool for urban and agricultural planning. Geografia Ensino & Pesquisa, v. 22, n. 17, p. e17, 2018.
[53] SCHUMM, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, v. 67, n. 5, p. 597-646, 1956.
https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
[54] SHAPIRO, S.S.; WILK, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika Trust, v. 52, n. 3-4, p. 591-609, 1965. https:// doi.org/10.2307/2333709
[55] SINGH, V.P.; CUI, H.; BYRD, A. Sediment Graphs Based on Entropy Theory. Journal of Hydrologic Engineering, v. 20, n. 6, 2014. https://doi.org/10.1061/ (ASCE)HE.1943-5584.0001068
[56] SONI, S. Assessment of morphometric characteristics of Chakrar Watershed in Madhya Pradesh, India using geospatial technique. Applied Water Science, v. 7, n. 5, 2017. https://doi.org/10.1007/s13201-016-0395-2
[57] SONI, S.K.; TRIPATHI, S.; MAURYA, A.K. GIS based morphometric characterization of mini-watershed-Rachhar Nala of Anuppur District Madhya Pradesh. International Journal of Advanced Technology and Engineering Research, v. 3, n. 3, p. 32-38, 2013.
[58] SOUZA, C.F.; PERTILLE, C.T.; CORRÊA, B.J.S.; VIEIRA, F.S. Caracterização morfométrica da bacia hidrográfica do rio Ivaí-Paraná. Geoambiente Online, n. 29, p. 93-110, 2017. https://doi.org/10.5216/revgeoamb.v0i29.50602
[59] STRAHLER, A.N. Dynamics basis of geomorphology. GSA Bulletin, v. 63, n. 9, p. 923-938, 1952. https://doi.org/10.1130/0016- 7606(1952)63[923:DBOG]2.0.CO;2
[60] STRAHLER, A.N. Quantitative Analysis of Watershed Geomorphology. Eos, Transactions American Geophysical Union, v. 38, n. 6, p. 913-920, 1957. https://doi.org/10.1029/TR038i006p00913
[61] STRAHLER, A.N. Quantitative geomorphology. In: FAIRBRIDGE, R.W. (org.). The encyclopedia of geomorphology. Nova York: Reinhold Book Crop, 1968.
[62] STRAHLER, A.N. Quantitative geomorphology of drainage basins and channel networks. In: CHOW, V.T. (org.). Handbook of applied hydrology. Nova York: McGraw Hill Book Company, 1964. p. 4-11.
[63] TRIPATHI, S.; SONI, S.K.; MAURYA, A.K. Morphometric characterization and prioritization of sub-watershed of Seoni River in Madhya Pradesh through remote sensing and GIS technique. International Journal of Remote Sensing & Geoscience, v. 2, n. 3, p. 46-54, 2013.
[64] VANDANA, M. Morphometric analysis and watershed prioritization: a case study of Kabani River Basin, Wayanad District, Kerala, India. Indian Journal of Geo-Marine Sciences, v. 42, n. 2, p. 211-222, 2013.
[65] VILELLA, S.M.; MATTOS, A. Hidrologia aplicada. São Paulo: McGraw Hill do Brasil, 1975
[66] VITTALA, S.S.; GOVINDAIAH, S.; HONNE GOWDA, H. Morphometric analysis of sub-watersheds in the Pavagada Area of Tumkur District, South India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, v. 32, n. 4, p. 351-362, 2004. https://doi.org/10.1007/ BF03030860
[67] WU, Q.; LANE, C.R. Delineating wetland catchments and modeling hydrologic connectivity using LiDAR data and aerial imagery. Hydrological and Earth System Sciences, v. 21, n. 7, p. 3579-3595, 2017. https://doi. org/10.5194/hess-21-3579-2017
[68] YANG, P.; AMES, D.P.; FONSECA, A.; ANDERSON, D.; SHRESTHA, R.; GLENN, N.F.; CAO, Y. What is the effect of LiDAR-derived DEM resolution on largescale watershed model results? Environmental Modelling and Software, v. 58, p. 48-57, 2014. https://doi.org/10.1016/j.envsoft.2014.04.005
Copyright © 2025 Robison Negri, Heinz Fill

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License