Removal of copper from contaminated waters using rhamnolipids
Journal: Region - Water Conservancy DOI: 10.32629/rwc.v8i2.3742
Abstract
The use of rhamnolipids constitutes an attractive and eco-compatible alternative in the remediation of contaminated environments with heavy metals. In the present work, the ability of rhamnolipid produced by P. aeruginosa ORA9 to remove copper in contaminated waters of the Blue Lagoon of El Cobre, was evaluated, to control and reduce the human and environmental risk that these waters represent. The influence of the pH of the rhamnolipid solution (4-10), the contact time (2-10 hours) and the concentration of the biosurfactant (40- 120 mg L-1) in the process were studied, through a factorial design Box-Bhenken. An increase in the percentage of copper removal proportional to the contact time and the concentration of the biosurfactant was observed, reaching 48% removal at 10 h and 120 mg L-1. The results obtained indicate that rhamnolipids can be used in the design of a technology to remove copper in polluted contaminated waters.
Keywords
rhamnolipid; contaminated water; copper; heavy metals; factorial design
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1]HASHIM, M., et al. Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management. 2011, 92, 2355-2388. doi:10.1016/j.jenvman.2011.06.009
[2]CAROLIN, C., et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering. 2017, 5, 2782–2799. doi:10.1016/j.jece.2017.05.029
[3]FU, F., WANG, Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011, 92, 3, 407-418. doi:10.1016/j.jenvman.2010.11.011
[4]WU, M., et al. Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. Journal of Hazardous Materials. 2017, 337, 189–197. doi: 10.1016/j.jhazmat.2017.05.00
[5]DESAI, J., BANAT, I. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews. 1997, 61, 1, 47-64. doi:10.1128/.61.1.47-64.1997
[6]MULLIGAN, C., YONG, R., GIBBS, B. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology. 2001, 60, 371-380. doi:10.1016/S0013-7952(00)00117-4
[7]CHEN, W., et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid. Environ SciPollut Res. 2017, 24, 16344-16350. doi:10.1007/s11356-017-9272-2
[8]ABYANEH, A., FAZAELIPOOR, M. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. Journal of Environmental Management. 2016, 165, 184-187. doi:10.1016/j.jenvman.2015.09.034
[9]VILASÓ, J. E. Laguna azul del Cobre: bella pero... [en línea]. (Consultado: 5/09/2020). Disponible en: https://www.elchago.com/2020/07/28/laguna-azul-del-cobre-santiago-de-cuba/
[10]RODRÍGUEZ, O., et al. Assessment of water quality from the Blue Lagoon of El Cobre mine in Santiago de Cuba: a preliminary study for water reuse. Environmental Science and Pollution Research, 2019, 26, (16), 16366-16377. doi:10.1007/s11356-019-05030-311.
[11]RODRÍGUEZ, O., et al. Screening and Characterization of Biosurfactant-Producing Bacteria Isolated from Contaminated Soils with Oily Wastes. J. Environ. Treat. Tech., 2017, 5 (1), 5-11. ISSN: 2309-1185.
[12]ELOUZI, A, et al. Removal of heavy metals contamination by bio-Surfactants (Rhamnolipids). Journal of Chemical and Pharmaceutical Research. 2012, 4, 90: 4337-4341. ISSN: 0975-7384.
[13]Statgraphics Centurion, X. V. I. Statpoint Technologies. INC. version, 16, 17. 2009.
[14]MULLIGAN, C. Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 2009, 14, 372-378. doi:10.1016/j.cocis.2009.06.005.
[15]DAHRAZMA, B., MULLIGAN, C. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 2007, 69, 705-711. doi:10.1016/j.chemosphere.2007.05.037
[16]NORMA CUBANA 1021 (2014) Higiene comunal. Fuentes de abastecimiento de agua. Calidad y protección sanitaria.
[17]OCHOA-LOZA, F. J., ARTIOLA, J. F., MAIER, R. M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 2001, 30, 479-485. doi:10.2134/jeq2001.302479x
[18]FRANZETTI, A., GANDOLFI, I., FRACCHIA, L. Biosurfactant Use in Heavy Metal Removal from Industrial Efflents and Contaminated Sites. En: KOSARIC, N., SUKAN, F. V (Eds) Biosurfactants: Production and Utilization - Processes, Technologies and Economics. Taylor & Francis, 2014, pp 361-369, ISBN 9781466596696
[19]HOGAN, D. E. Biosurfactant (monorhamnolipid) complexation of metals and Applications for aqueous metalliferous waste remediation. Dissertation Submitted For the Degree of Doctor Of Philosophy, University Of Arizona, 2016. Disponible en: https://repository.arizona.edu/handle/10150/623071.
[20]CIÉSLA, J., KOCZANSKA, M, BIEGANOWSKI, A. An Interaction of Rhamnolipids with Cu2+ Ions. Molecules 2018, 23, 488, 2-12. doi:10.3390/molecules23020488
[21]KOWALSKA, I., KLIMONDA, A. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration. E3S Web of Conferences 22, 00087. 2017. doi: 10.1051/e3sconf/20172200087
[22]LIDUINO, V. S., SERVULO, E. F., OLIVEIRA, F. J. Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.). J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018, 53, 7, 609-616. ISSN: 1093-4529.
[2]CAROLIN, C., et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering. 2017, 5, 2782–2799. doi:10.1016/j.jece.2017.05.029
[3]FU, F., WANG, Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011, 92, 3, 407-418. doi:10.1016/j.jenvman.2010.11.011
[4]WU, M., et al. Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. Journal of Hazardous Materials. 2017, 337, 189–197. doi: 10.1016/j.jhazmat.2017.05.00
[5]DESAI, J., BANAT, I. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews. 1997, 61, 1, 47-64. doi:10.1128/.61.1.47-64.1997
[6]MULLIGAN, C., YONG, R., GIBBS, B. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology. 2001, 60, 371-380. doi:10.1016/S0013-7952(00)00117-4
[7]CHEN, W., et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid. Environ SciPollut Res. 2017, 24, 16344-16350. doi:10.1007/s11356-017-9272-2
[8]ABYANEH, A., FAZAELIPOOR, M. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. Journal of Environmental Management. 2016, 165, 184-187. doi:10.1016/j.jenvman.2015.09.034
[9]VILASÓ, J. E. Laguna azul del Cobre: bella pero... [en línea]. (Consultado: 5/09/2020). Disponible en: https://www.elchago.com/2020/07/28/laguna-azul-del-cobre-santiago-de-cuba/
[10]RODRÍGUEZ, O., et al. Assessment of water quality from the Blue Lagoon of El Cobre mine in Santiago de Cuba: a preliminary study for water reuse. Environmental Science and Pollution Research, 2019, 26, (16), 16366-16377. doi:10.1007/s11356-019-05030-311.
[11]RODRÍGUEZ, O., et al. Screening and Characterization of Biosurfactant-Producing Bacteria Isolated from Contaminated Soils with Oily Wastes. J. Environ. Treat. Tech., 2017, 5 (1), 5-11. ISSN: 2309-1185.
[12]ELOUZI, A, et al. Removal of heavy metals contamination by bio-Surfactants (Rhamnolipids). Journal of Chemical and Pharmaceutical Research. 2012, 4, 90: 4337-4341. ISSN: 0975-7384.
[13]Statgraphics Centurion, X. V. I. Statpoint Technologies. INC. version, 16, 17. 2009.
[14]MULLIGAN, C. Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid & Interface Science, 2009, 14, 372-378. doi:10.1016/j.cocis.2009.06.005.
[15]DAHRAZMA, B., MULLIGAN, C. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 2007, 69, 705-711. doi:10.1016/j.chemosphere.2007.05.037
[16]NORMA CUBANA 1021 (2014) Higiene comunal. Fuentes de abastecimiento de agua. Calidad y protección sanitaria.
[17]OCHOA-LOZA, F. J., ARTIOLA, J. F., MAIER, R. M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 2001, 30, 479-485. doi:10.2134/jeq2001.302479x
[18]FRANZETTI, A., GANDOLFI, I., FRACCHIA, L. Biosurfactant Use in Heavy Metal Removal from Industrial Efflents and Contaminated Sites. En: KOSARIC, N., SUKAN, F. V (Eds) Biosurfactants: Production and Utilization - Processes, Technologies and Economics. Taylor & Francis, 2014, pp 361-369, ISBN 9781466596696
[19]HOGAN, D. E. Biosurfactant (monorhamnolipid) complexation of metals and Applications for aqueous metalliferous waste remediation. Dissertation Submitted For the Degree of Doctor Of Philosophy, University Of Arizona, 2016. Disponible en: https://repository.arizona.edu/handle/10150/623071.
[20]CIÉSLA, J., KOCZANSKA, M, BIEGANOWSKI, A. An Interaction of Rhamnolipids with Cu2+ Ions. Molecules 2018, 23, 488, 2-12. doi:10.3390/molecules23020488
[21]KOWALSKA, I., KLIMONDA, A. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration. E3S Web of Conferences 22, 00087. 2017. doi: 10.1051/e3sconf/20172200087
[22]LIDUINO, V. S., SERVULO, E. F., OLIVEIRA, F. J. Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.). J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018, 53, 7, 609-616. ISSN: 1093-4529.
Copyright © 2025 Odalys Rodríguez-Gámez, Rocio Pérez-Macías, Isabel Aguilera-Rodríguez, Rosa María Pérez-Silva, Arelis Abalos-Rodríguez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License