Hydraulic analysis with CFD numerical modeling - 3D flow of local erosion in bridge piers

Journal: Region - Water Conservancy DOI: 10.32629/rwc.v8i2.3735

Khaled Hamad, Cristina Torres

Escuela Politécnica Nacional

Abstract

At the Center for Research and Studies in Water Resources (CIERHI), an experimental analysis was conducted using a physical model to study the turbulence phenomena that lead to erosion around bridge piers (Chiliquinga & Pinto, 2019). The data obtained from the above-mentioned experimental model served as the calibration basis for the three-dimensional numerical modeling of the erosion around bridge piers, with the application of the FLOW-3D computational software package. After the model was calibrated, the conditions under which the physical model was established were enhanced. This was because the experimental results indicated that a deeper sand bed was required to accurately determine the maximum degree of erosion. Optimal conditions were set in the numerical model so as to obtain results free from the physical constraints present in the experimental model. In this way, the results of the maximum erosion around bridge piers were acquired. These results were then compared with the values calculated according to various empirical equations.

Keywords

At the Center for Research and Studies in Water Resources (CIERHI), an experimental analysis was conducted using a physical model to study the turbulence phenomena that lead to erosion around bridge piers (Chiliquinga & Pinto, 2019). The data obtained fro

References

[1]Bravo, M., Osterkamp, P., & Lopes, L. (2004). Transporte de sedimentos en corrientes naturales. Terra Latinoamericana, 22(3), 377-386. https://www.redalyc.org/pdf/573/57322315.pdf
[2]Chiliquinga, J., & Pinto, C. (2019). Análisis experimental en modelo físico de fenómenos de turbulencia causantes de erosión alrededor de pilas de puentes utilizando acoustic doppler velocimeterADV [Tesis de pregrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20363
[3]Chow, V. (2004). Hidráulica de canales abiertos. Nomos S.A.
[4]Fernández Luque, R., & Van Beek, R. (1976). Erosion and transport of bed-load sediment. Journal of Hydraulic Research, 14(2), 127 - 144. https://doi.org/10.1080/00221687609499677
[5]Fernández, M. (2004). Estudio de la evolución temporal de la Erosión Local en. Barcelona [Tesina]: UPCommons. https://upcommons.upc.edu/handle/2099.1/3343
[6]FLOW- 3D. (s.f.). Flow 3D Hydro user manual. Obtenido de https:///C:/flow3d/HYDROv1.0u1/help/index.html
[7]Gallardo, K. (2019). Demostración experimental del efecto de los paneles sumergidos en la erosión local de pilas de puentes cuadradas. Quito, Pichincha, Ecuador [Tesis de pregrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20172?locale=de
[8]Hamad, K. (2015). Submerged Vanes Turbulence Experimental Analysis [Tesis doctoral, Universitat Politècnica de Catalunya]. TDX. http://hdl.handle.net/10803/377436
[9]Higgins, A., Restrepo, J., Otero, L., Ortiz, J., & Conde, M. (2017). Distribución vertical de sedimentos en suspensión en la zona de desembocadura. Latin american journal of aquatic research.,45(4), 724-736. http://dx.doi.org/10.3856/vol45-issue4-fulltext-9
[10]Jurado, L., & Oñate, V. (Julio de 2020). Análisis del transporte de sedimentos aguas abajo de paneles sumergidos aplican. Quito, Ecuador [Tesis de postgrado, Escuela Politécnica Nacional]. Repositorio digital institucional de la Escuela Politécnica Nacional. https://bibdigital.epn.edu.ec/handle/15000/20172?locale=de
[11]Mastbergen, D., & Van Den Berg, J. (2003). Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4), 625 - 637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
[12]Meyer-Peter, E., y Muller, R. (1948). Formulas for Bed-Load Transport. Proceedings of the 2nd Meeting the International Association for Hydraulic Structures Research, Delft, 39-64. http://resolver.tudelft.nl/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7
[13]Nielsen, P. (1992) Coastal Bottom Boundary Layers and Sediment Transport. World Scientific. https://doi.org/10.1142/1269
[14]Rijn, Van. (1984). Sediment transport, Part I: bed load transport. Journal of Hydraulic, 110(10). 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
[15]Rijn, Van. (1993). Principles of sediment transport in rivers, estuaries and coastal seas. Aqua, Amsterdam Publications.
[16]Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preußischen Versuchsanstalt für Wasserbau. http://resolver.tudelft.nl/uuid:a66ea380-ffa3-449b-b59f-38a35b2c6658
[17]Soulsby, C. (1997). Bed load transport. In Dynamics of Marine Sand. Thomas Telford Publications.
[18]Weig, G, Brethour, J., Grunzner, M., y Burnham, J. (2014). The sediment Scour Model in Flow 3D. Flow Science.

Copyright © 2025 Khaled Hamad, Cristina Torres

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License