Processes impacting irrigation water quality in several coastal wells of Center-Southern Cuba
Journal: Region - Water Conservancy DOI: 10.32629/rwc.v8i2.3734
Abstract
Water quality is a variable to be controlled in irrigated agriculture. The objective of the research was to identify the main processes that impacted water quality for irrigation in wells located in the southeastern coastal area of Cienfuegos Bay. The data came from the company Recursos Hidráulicos and includes the concentrations of the majority components and the electrical conductivity (EC) of water from seven wells, during the 1983-2015 stage. To facilitate the treatment, a similarity analysis was applied and three groups of wells with different physical and chemical characteristics were obtained. The identification of the influent processes in each group was achieved through ionic relations and principal component analysis. The following indicators were used to characterize the water for irrigation: potential salinity (SP), permeability index (PI), sodium adsorption ratio (SAR), percent sodium possible (PSP), residual sodium carbonate (CSR), EC, total hardness (TD), Kelly ratio (KR) and magnesium adsorption ratio (RAM). The water in all three groups was calcium bicarbonate, with a higher proportion of these ions in the first group. The main processes identified were: rock washing, cation exchange, chloride and sodium input, and salinization of the water. The water met the established requirements for irrigation. However, in the wells of the second and third groups, an increase in TD and a decrease in PI linked to anthropic activities developed in the basins were observed.
Keywords
potential salinity; permeability index; ionic relations; anthropic activities
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] APHA (1980). Standard methods for the examination of water and wastewater. 15th Edition. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, EUA, 1134 pp.
[2] Arslan H. y Demir Y. (2013). Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environ. Monit. Assess. 185 (2), 1027-1040. DOI: 10.1007/s10661-012-2611-3
[3] Arzola N.C., Fundora O. y de Mello R. (2013). Manejo de suelos para una agricultura sostenible. Ed. Jaboticabal- Facultad de Ciencias Agrarias y Veterinaria/Universidad Estadual Paulista, Sao Paulo, Brasil, 511 pp.
[4] Asamoah E., Nketia K.A., Sadick A., Asenso D., Kwabena E., Ayer J. y Owusu E. (2015). Water quality assessment of lake Bosomtwe for irrigation purpose, Ghana. Intl. J. Agri. Crop. Sci. 8 (3), 366-372.
[5] Ayers R.S. y Wescot D.W. (1976). Calidad del agua para la agricultura. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia, 85 pp.
[6] Ayers R.S. (1987). La calidad del agua en la agricultura. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia, 173 pp.
[7] Balmaseda C., Ponce de León D., Martín N.J. y Vargas A.H. (2006). Compendio de Suelo. Universidad Agraria de la Habana, Cuba, 229 pp.
[8] Betancourt C., Suárez R., Concepción E. y Herrera H. (2012a). Tendencia de los componentes mayoritarios del agua de cuatro embalses en el centro-sur cubano, durante un período de veinte años. Gestión Ambiental 23, 51-65.
[9] Betancourt C., Suárez R. y Jorge F. (2012b). Influencia de los procesos naturales y antrópicos sobre la calidad del agua en cuatro embalses cubanos. Limnetica 31 (2), 193-204.
[10] Bosch M., Costa J.L., Cabria F.N. y Aparicio V.C. (2012). Relación entre la variabilidad espacial de la conductividad eléctrica y el contenido de Na+ del suelo. Ciencia del Suelo 30 (2), 27-38.
[11] Chapman D. (1996). Water quality assessments. A guide to use of biota, sediments and water in environmental monitoring. Second edition. Chapman y Hall, Londres, Inglaterra, 651 pp.
[12] Choramin M., Safaei A., Khajavi S., Hamid H. y Abozari S. (2015). Analyzing and studding chemical water quality parameters and its changes on the base of Schuler, Wilcox and Piper diagrams (project: Bahamanshir River). WALIA Journal 31, 22-27.
[13] Cortés-Jiménez J.M., Troyo-Diéguez E. y Murillo-Amador E. (2009). Índices de calidad del agua del acuífero del valle del Yaqui Sonora. Terra Latinoamericana 27 (2), 133-141.
[14] Durfor C.N. y Becker E. (1964). Public water supplies of the 100 largest cities in the United States, 1962. American Water Works Association. Washington, EUA, 364 pp.
[15] Fernández A. y Miretzky P. (2004). Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quarter. Int. 114 (1), 113-121. DOI: 10.1016/s1040-6182(03)00046-6
[16] Giussani B., Monticelli D., Gambillara R., Pozzi A. y Dossi C. (2008). Three-way principal component analysis of chemical data from Lake Como watershed. Microchem. J. 88, 160-166.
[17] Graczik Z., Graczik T. y Naprauska A. (2011). A rol some food arthropods as vectors of human enteric infections. Center eur. J. Biol. 6 (2) 145-149. DOI: 10.2478/s11535-010-0117-y
[18] Hernández-Jiménez A., Pérez-Jiménez J.M., Bosch- Infante D. y Castro-Speck N. (2015). Nueva Versión de Clasificación Genética de los Suelos de Cuba. La Habana, Cuba. Instituto de Suelos, 64 pp.
[19] Jha P. K., Tiwari J., Singh U. K., Kumar M. y Subramanian V. (2009). Chemical weathering and associated CO. consumption in the Godavari river basin, India. Chem. Geol. 264 (1-4), 364-374.
[20] Kelly W.P. (1963). Use of saline irrigation water. Soil Sci. 95 (4), 355-391. DOI: 10.1097/00010694-196306000-00003
[21] Kovalevskii V.S. (2007). Effect of climate changes on groundwater. Water Res. 34 (2), 140-152.
[22] Lin C.Y., Abdullah M.H., Praveena S.M., Yahaya A.H. y Musta B. (2012). Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J. Hydrol.432 (433), 26-42. DOI: 10.1016/j.jhydrol.2012.02.015
[23] Lingaswamy M. y Saxena P.R. (2015). Water quality of Fox Sagar Lake, Hyderabad, Telangana State, India, Its Suitability for Irrigation Purpose. Int. J. Adv. Res. Sci. Technol. 4 (8), 490-494.
[24] Miyamoto S. y Anand S. (2008). Hydrology, Salinity, and Salinity Control Possibilities of the Middle Pecos River: A Reconnaissance Report. Texas Water Resources Institute, Technical Report TR – 315. Texas, Estados Unidos. 31 pp.
[25] Moreno F. y Roldán J. (2013). Assessment of irrigation water management in the Genil-Cabra (Cordoba, Spain) irrigation district using irrigation indicators. Agr. Water Manage. 120 (1), 98-106. DOI: 10.1016/j.agwat.2012.06
[26] Omo-Irabor O.O., Olobaniyi S., Oduyemi K. y Akunna J. (2008). Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the western Niger Delta, Nigeria. Phys. Chem. Earth 33, 666-673.
[27] Palancar T. (2006). Compresibilidad y resistencia al corte de suelos salinizados y sodificados por irrigación. Tesis de Doctorado. Universidad Nacional de la Plata, La Plata Argentina, 131 pp.
[28] Pehlivan R. y Yilmaz O. (2005). Water quality and hydro- geochemical characteristics of the river Buyukmelen, Duzce, Turkey. Hydrol. Process. 19, 3947-3971. DOI: 10.1002/hyp.5859
[29] Rajmohan N. y Elango L. (2007). Hydrogeochemistry and its relation to groundwater level fluctuation in the Palar and Cheyyar river basins, southern India. Hydrol. Process. 20, 2415-2427. DOI: 10.1002/hyp.6052.
[30] Tartabul T. y Betancourt C. (2016). La calidad del agua para el riego. Principales indicadores de medida y
procesos que la impactan. Revista Agroecosistemas 4 (1), 47-61.
[31] Vasanthavigar M., Srinivasamoorthy K., RajivGanthi R., Vijayaraghavan K. y Sarma V.S. (2012). Characterization and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimut- tar sub-basin, Tamil Nadu, India. Arab. J. Geosci. 5, 245-258.
[32] Wetzel R. G. (1975). Limnology. W. B. Saunders Com- pany. Philadelphia, EUA, 743 pp.
[33] Wilcox L.V. (1955). Classification and use of the irrigation waters, Washington, D.C. Washington, EUA, 28 pp.
[34] Zghibi A. Tarhouni J. y Zouhri L. (2013). Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). J. Afr. Earth sci. 87, 1-12. DOI: 10.1016/j.jafrearsci.2013.07.009
[2] Arslan H. y Demir Y. (2013). Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environ. Monit. Assess. 185 (2), 1027-1040. DOI: 10.1007/s10661-012-2611-3
[3] Arzola N.C., Fundora O. y de Mello R. (2013). Manejo de suelos para una agricultura sostenible. Ed. Jaboticabal- Facultad de Ciencias Agrarias y Veterinaria/Universidad Estadual Paulista, Sao Paulo, Brasil, 511 pp.
[4] Asamoah E., Nketia K.A., Sadick A., Asenso D., Kwabena E., Ayer J. y Owusu E. (2015). Water quality assessment of lake Bosomtwe for irrigation purpose, Ghana. Intl. J. Agri. Crop. Sci. 8 (3), 366-372.
[5] Ayers R.S. y Wescot D.W. (1976). Calidad del agua para la agricultura. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia, 85 pp.
[6] Ayers R.S. (1987). La calidad del agua en la agricultura. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia, 173 pp.
[7] Balmaseda C., Ponce de León D., Martín N.J. y Vargas A.H. (2006). Compendio de Suelo. Universidad Agraria de la Habana, Cuba, 229 pp.
[8] Betancourt C., Suárez R., Concepción E. y Herrera H. (2012a). Tendencia de los componentes mayoritarios del agua de cuatro embalses en el centro-sur cubano, durante un período de veinte años. Gestión Ambiental 23, 51-65.
[9] Betancourt C., Suárez R. y Jorge F. (2012b). Influencia de los procesos naturales y antrópicos sobre la calidad del agua en cuatro embalses cubanos. Limnetica 31 (2), 193-204.
[10] Bosch M., Costa J.L., Cabria F.N. y Aparicio V.C. (2012). Relación entre la variabilidad espacial de la conductividad eléctrica y el contenido de Na+ del suelo. Ciencia del Suelo 30 (2), 27-38.
[11] Chapman D. (1996). Water quality assessments. A guide to use of biota, sediments and water in environmental monitoring. Second edition. Chapman y Hall, Londres, Inglaterra, 651 pp.
[12] Choramin M., Safaei A., Khajavi S., Hamid H. y Abozari S. (2015). Analyzing and studding chemical water quality parameters and its changes on the base of Schuler, Wilcox and Piper diagrams (project: Bahamanshir River). WALIA Journal 31, 22-27.
[13] Cortés-Jiménez J.M., Troyo-Diéguez E. y Murillo-Amador E. (2009). Índices de calidad del agua del acuífero del valle del Yaqui Sonora. Terra Latinoamericana 27 (2), 133-141.
[14] Durfor C.N. y Becker E. (1964). Public water supplies of the 100 largest cities in the United States, 1962. American Water Works Association. Washington, EUA, 364 pp.
[15] Fernández A. y Miretzky P. (2004). Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quarter. Int. 114 (1), 113-121. DOI: 10.1016/s1040-6182(03)00046-6
[16] Giussani B., Monticelli D., Gambillara R., Pozzi A. y Dossi C. (2008). Three-way principal component analysis of chemical data from Lake Como watershed. Microchem. J. 88, 160-166.
[17] Graczik Z., Graczik T. y Naprauska A. (2011). A rol some food arthropods as vectors of human enteric infections. Center eur. J. Biol. 6 (2) 145-149. DOI: 10.2478/s11535-010-0117-y
[18] Hernández-Jiménez A., Pérez-Jiménez J.M., Bosch- Infante D. y Castro-Speck N. (2015). Nueva Versión de Clasificación Genética de los Suelos de Cuba. La Habana, Cuba. Instituto de Suelos, 64 pp.
[19] Jha P. K., Tiwari J., Singh U. K., Kumar M. y Subramanian V. (2009). Chemical weathering and associated CO. consumption in the Godavari river basin, India. Chem. Geol. 264 (1-4), 364-374.
[20] Kelly W.P. (1963). Use of saline irrigation water. Soil Sci. 95 (4), 355-391. DOI: 10.1097/00010694-196306000-00003
[21] Kovalevskii V.S. (2007). Effect of climate changes on groundwater. Water Res. 34 (2), 140-152.
[22] Lin C.Y., Abdullah M.H., Praveena S.M., Yahaya A.H. y Musta B. (2012). Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J. Hydrol.432 (433), 26-42. DOI: 10.1016/j.jhydrol.2012.02.015
[23] Lingaswamy M. y Saxena P.R. (2015). Water quality of Fox Sagar Lake, Hyderabad, Telangana State, India, Its Suitability for Irrigation Purpose. Int. J. Adv. Res. Sci. Technol. 4 (8), 490-494.
[24] Miyamoto S. y Anand S. (2008). Hydrology, Salinity, and Salinity Control Possibilities of the Middle Pecos River: A Reconnaissance Report. Texas Water Resources Institute, Technical Report TR – 315. Texas, Estados Unidos. 31 pp.
[25] Moreno F. y Roldán J. (2013). Assessment of irrigation water management in the Genil-Cabra (Cordoba, Spain) irrigation district using irrigation indicators. Agr. Water Manage. 120 (1), 98-106. DOI: 10.1016/j.agwat.2012.06
[26] Omo-Irabor O.O., Olobaniyi S., Oduyemi K. y Akunna J. (2008). Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the western Niger Delta, Nigeria. Phys. Chem. Earth 33, 666-673.
[27] Palancar T. (2006). Compresibilidad y resistencia al corte de suelos salinizados y sodificados por irrigación. Tesis de Doctorado. Universidad Nacional de la Plata, La Plata Argentina, 131 pp.
[28] Pehlivan R. y Yilmaz O. (2005). Water quality and hydro- geochemical characteristics of the river Buyukmelen, Duzce, Turkey. Hydrol. Process. 19, 3947-3971. DOI: 10.1002/hyp.5859
[29] Rajmohan N. y Elango L. (2007). Hydrogeochemistry and its relation to groundwater level fluctuation in the Palar and Cheyyar river basins, southern India. Hydrol. Process. 20, 2415-2427. DOI: 10.1002/hyp.6052.
[30] Tartabul T. y Betancourt C. (2016). La calidad del agua para el riego. Principales indicadores de medida y
procesos que la impactan. Revista Agroecosistemas 4 (1), 47-61.
[31] Vasanthavigar M., Srinivasamoorthy K., RajivGanthi R., Vijayaraghavan K. y Sarma V.S. (2012). Characterization and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimut- tar sub-basin, Tamil Nadu, India. Arab. J. Geosci. 5, 245-258.
[32] Wetzel R. G. (1975). Limnology. W. B. Saunders Com- pany. Philadelphia, EUA, 743 pp.
[33] Wilcox L.V. (1955). Classification and use of the irrigation waters, Washington, D.C. Washington, EUA, 28 pp.
[34] Zghibi A. Tarhouni J. y Zouhri L. (2013). Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). J. Afr. Earth sci. 87, 1-12. DOI: 10.1016/j.jafrearsci.2013.07.009
Copyright © 2025 Carmen BETANCOURT AGUILAR, Tania TARTABULL, Yeny LABAUT, Roberto FERRADAZ

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License