超级电容器电极材料研究现状

Journal: Building Technology Research DOI: 10.32629/btr.v3i3.2944

朱浩鹏, 林柏仲, 王宏伟, 赵连成, 赵丽

Abstract

随着人们对储能要求的不断提高,超级电容器以其充电放电速度快、功率密度大和循环稳定性好等优点广泛应用于新能源汽车、智能电网、通信系统、建筑节能自供电家居器件等领域。本文简单介绍超级电容器的储能机理和不同电极材料的研究现状。

Keywords

电容器;电极材料;双电层电容器;法拉第赝电容器;非对称电容器

References

[1] 肖谧,宿玉鹏,杜伯学.超级电容器研究进展[J].电子元件与材料,2019,38(09):1-12.
[2] 郭慰彬,陈嘉炼,刘金玲,等.超级电容器用碳基电极材料研究进展[J].电子元件与材料,2019,38(01):1-8.
[3] 肖建伟,肖谷雨.酪蛋白热解制备多孔碳及其超级电容器性能[J].功能高分子学报,2020,(33):1-8.
[4]Chen S, Gao W, Chao Y, et al. Low temperature preparation of pore structure controllable graphene for high volumetric performance supercapacitors [J]. Electrochimica Acta, 2018,273:181-190.
[5] 梁晨.用于超级电容器电极的生物质炭及其复合材料的制备与性能研究[D].吉林大学,2019.
[6] Zhu C, He Y, Liu Y, et al. ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes [J]. Journal of Energy Chemistry, 2019, 35:124-131.
[7] Pan Z, Jiang Y, Yang P, et al. In-situ Growth of Layered Bimetallic ZnCo Hydroxide Nanosheets for High-Performance All-Solid-State Pseudocapacitor [J]. ACS Nano 2018, 12(3): 2968-2979.
[8] Wang H, Guan C, Wang X, et al. A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode [J]. Small, 2015, 11(12):1470-1477.

Copyright © 2020 朱浩鹏, 林柏仲, 王宏伟, 赵连成, 赵丽

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License