Microbiota, Cancer and Immune Therapy

Journal: Advances in Medicine and Engineering Interdisciplinary Research DOI: 10.32629/ameir.v1i4.1629

Luis Cabezón-Gutiérrez1, Magda Palka-Kotlowska1, Sara Custodio-Cabello1, Maria Luisa Villamayor-Delgado2, Ana Isabel Franco-Moreno3, Parham Khosravi-Shahi4

1. Department of Medical Oncology, University Hospital of Torrejón, Madrid, Spain.
2. Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain.
3. Department of Internal Medicine, Hospital Universitario Infanta Leonor, Madrid, Spain.
4. Department of Medical Oncology, Gregorio Maranon University General Hospital, Madrid, Spain.

Abstract

The relationship between cancer and microbes is complex and not entirely known. The objective of this manuscript is to review the scientific evidence on the relationship between the microbiome, cancer and immunotherapy. A non-systematic literature review was done in the databases MEDLINE, COCHRANE, and DATABASE, and articles of greater scientific rigor, mainly reviews or prospective studies/randomized clinical trials published to date (May 2018), were selected. Terms used in the search included: microbiome, microbiota, cancer, immune checkpoint inhibitors, PD-L1, PD-1 and CTLA-4.

Keywords

microbiota; cancer; immunotherapy; neoplasms

References

[1] Icaza-Chávez ME. 2013. Gut microbiota in health and disease. Rev Gastroenterol Mex, 78(4): 240-248.
[2] Korecka A, Arulampalam V. 2012. The gut microbiome: scourge, sentinel or spectator? J Oral Microbiol, 4: 9367.
[3] Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. 2012. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol, 13(6): 607-615.
[4] Schwabe RF, Jobin C. 2013. The microbiome and cancer. Nat Rev Cancer, 13(11): 800-812.
[5] Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. 2013. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer, 13(11): 759-771.
[6] Sears CL, Garrett WS. 2014. Microbes, microbiota, and colon cancer. Cell Host Microbe, 15(3): 317-28.
[7] Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8):e1002533.
[8] Palm NW, Zoete MR, Flavell RA. 2015. Immune-microbiota interactions in health and disease. Clinical Immunology, 159(2): 122-127.
[9] The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486: 207-214.
[10] Humphries A, Daud A. 2018. The gut microbiota and immune checkpoint inhibitors. Hum Vaccin Immunother, 14(9): 2178-2182.
[11] Okumura R, Takeda K. 2017. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med, 49: e338.
[12] Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 350(6264): 1079-1084.
[13] Marthey L, Mateus C, Mussini C, Nachury M, Nancey S, Grange F, et al. 2016. Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory bowel disease. Journal of Crohn's & Colitis, 10(4): 395-401.
[14] Sivan A, Corrales L, Hubert N, Williams JB, Aquino Michaels K, Earley ZM, et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 350(6264): 1084-1089.
[15] Spranger S, Sivan A, Corrales L, Gajewski TF. 2016. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Advances in Immunology, 130: 75-93.
[16] Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet Hughes A. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. The American Journal of Clinical Nutrition, 66(2): 515S-520S.
[17] Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, et al. 2004. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clinical and Diagnostic Laboratory Immunology, 11(4): 686-690.
[18] Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. 2018. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science, 359(6371): 104-108.
[19] Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al. 2017. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia, 19(10): 848-55.
[20] Wargo JA, Gopalakrishnan V, Spencer C, Karpinets T, Reuben A, Andrews MC, et al. 2017. Association of the diversity and composition of the gut microbiome with responses and survival (PFS) in metastatic melanoma (MM) patients (pts) on anti-PD-1 therapy. J Clin Oncol, 35(15): 3008.
[21] Gopalakrishnan V, Spencer C, Nezi L, Reuben A, Andrews M, Karpinets T, et al. 2018. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 359(6371): 97-103.
[22] Routy B, Le Chatelier E, Derosa L, Duong CP, Alou MT, Daillre R, et al. 2018. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 359(6371): 91-97.
[23] Kiseleva EP, Mikhailopulo KI, Sviridov OV, Novik GI, Knirel YA, Szwajcer-Dey E. 2011. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases. Beneficial Microbes, 2(2): 139-154.
[24] Stsepetova J, Sepp E, Julge K, Vaughan E, Mikelsaar M, de Vos WM. 2007. Molecularly assessed shifts of Bifidobacterium ssp. and less diverse microbial communities are characteristic of 5-year-old allergic children. FEMS Immunology and Medical Microbiology, 51(2): 260-269.
[25] Goubet AG, Daillère R, Routy B, Derosa L, M Roberti P, Zitvogel L. 2018. The impact of the intestinal microbiota in therapeuticresponses against cancer. C R Biol, 341(5): 284-289.
[26] Treuting PM, Arends M, Dintzis SM. Lower Gastrointestinal Tract. 2017. In Treuting PM, Dintzis SM, Montine KS, editors, comparative anatomy and histology: a mouse, rat and human atlas. Elsevier Science, 213-228.
[27] Casteleyn C, Rekecki A, Van Der Aa A, Simoens P, Van Den Broeck W. 2010. Surface area assessment of the murine intestinal tract as a prerequisite for oral dose translation from mouse to man. Laboratory Animals, 44(3): 176-183.
[28] Nguyen TLA, Vieira-Silva S, Liston A, Raes J. 2015. How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms, 8(1): 1-16.
[29] Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. 2005. Proceedings of the National Academy of Sciences of the United States of America, 102(31): 11070-11075.
[30] Olveira-Fuster G, González-Molero I. Probióticos y prebióticos en la práctica clínica. 2007. Nutr Hosp, 22(Supl.2): 26-34.
[31] Schrezenmeir J, De Vrese M. 2001. Probiotics, prebiotics, and synbiotics - approaching a definition. Am J Clin Nutr, 73(Supl.2): 361-364.
[32] London, Ontario, Canada: FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Disponible en: http://www.who.int/foodsafety/fs_management/en/probiotic _ guidelines.pdf
[33] Linares DM, Ross P, Stanton C. 2016. Beneficial microbes: the pharmacy in the gut. Bioengineered, 7(1): 11-20.
[34] Vitetta L, Hall S, Linnane AW. 2014. Live probiotic cultures and the gastrointestinal tract: symbiotic preservation of tolerance whilst attenuating pathogenicity. Front Cell Infect Microbiol, 4: 143.
[35] Vitetta L, Palacios T, Hall S, Coulson S. 2015. Gastrointestinal tract commensal bacteria and probiotics: influence on end-organ physiology. Prog Drug Res, 70: 1-33.
[36] Ozen M, Dinleyici EC. 2015. The history of probiotics: the untold story. Benef Microbes, 6(2): 159-165.
[37] Klein A, Friedrich U, Vogelsang H, Jahreis G. 2008. Lactobacillus acidophilus 74-2 and bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr, 62(5): 584-593.
[38] Gill HS, Rutherfurd KJ, Prasad, J, Gopal PK. 2000. Enhancement of natural and acquired immunity by lactobacillus rhamnosus (HN001), lactobacillus acidophilus (HN017) and bifidobacterium lactis (hn019). Br J Nutr, 83(2): 167-176.
[39] Tang ML, Lahtinen SJ, Boyle RJ. 2010. Probiotics and prebiotics: clinical effects in allergic disease. Curr Opin Pediatr, 22(5): 626-634.
[40] Amdekar S, Dwivedi D, Roy P, Kushwah S, Singh V. 2010. Probiotics: multifarious oral vaccine against infectious traumas. FEMS Immunol Med Microbiol, 58(3): 299-306.
[41] Vitetta L, Hall S, Coulson S. 2015. Metabolic interactions in the gastrointestinal tract (GIT): host, commensal, probiotics, and bacteriophage influences. Microorganisms, 3(4): 913-932.
[42] Vitetta L, Saltzman ET, Thomsen M, Nikov T, Hall S. 2017. Adjuvant probiotics and the intestinal microbiome: enhancing vaccines and immunotherapy outcome. Vaccines, 5(4): pii: E50
[43] Davidson LE, Fiorino AM, Snydman DR, Hibberd PL. 2011. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomized double-blind placebo-controlled trial. Eur J Clin Nutr, 65(4): 501-507.
[44] Van Puyenbroeck K, Hens N, Coenen S, Michiels B, Beunckens C, Molenberghs G, et al. 2012. Efficacy of daily intake of lactobacillus casei shirota on respiratory symptoms and influenza vaccination immune response: a randomized, double-blind, placebo-controlled trial in healthy elderly nursing home residents. Am J Clin Nutr, 95(5): 1165-1171.
[45] Rizzardini G, Eskesen D, Calder PC, Capetti A, Jespersen L, Clerici M. 2012. Evaluation of the immune benefits of two probiotic strains bifidobacterium animalis ssp. Lactis, BB-12(R) and lactobacillus paracasei ssp. Paracasei, l. Casei 431(R) in an influenza vaccination model: a randomised, double-blind, placebo-controlled study. Br J Nutr, 107(6): 876-884.
[46] Bosch M, Mendez M, Perez M, Farran A, Fuentes MC, Cune J. 2012. Lactobacillus plantarum CECT7315 and CECT7316 stimulate immunoglobulin production after influenza vaccination in elderly. Nutr Hosp, 27(2): 504-509.
[47] Akatsu H, Iwabuchi N, Xiao JZ, Matsuyama Z, Kurihara R, Okuda K, et al. 2013. Clinical effects of probiotic bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. J Parenter Enter Nutr, 37(5): 631-640.
[48] Jespersen L, Tarnow I, Eskesen D, Morberg CM, Michelsen B, Bugel S, et al. 2015. Effect of lactobacillus paracasei subsp. Paracasei, l. Casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: a randomized, double-blind, placebo-controlled, parallel-group study. Am J Clin Nutr, 101(6): 1188-1196.
[49] Maruyama M, Abe R, Shimono T, Iwabuchi N, Abe F, Xiao JZ. 2016. The effects of non-viable lactobacillus on immune function in the elderly: a randomised, doubleblind, placebo-controlled study. Int J Food Sci Nutr, 67(1): 67-73.
[50] Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, et al. 2017. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science, 357(6353): 806-810.

Copyright © 2024 Luis Cabezón-Gutiérrez, Magda Palka-Kotlowska, Sara Custodio-Cabello, Maria Luisa Villamayor-Delgado, Ana Isabel Franco-Moreno, Parham Khosravi-Shahi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License