On Ferroelectric Phenomenon in Free-standing Poly (Dibenzo-crown Ether) Films

Journal: Architecture Engineering and Science DOI: 10.32629/aes.v3i1.673

Shuai Zhu

Jiangxi Science and Technology Normal University, Nanchang 330000, Jiangxi, China

Abstract

Conjugated polymers generally do not possess the ferroelectricity due to charge delocalization in various degree. We discover the distinct ferroelectric phenomenon (from 0.1 to 2.16 μC cm-2) in freestanding films of three kinds of poly (dibenzo-crown ether) (PDBC, dibenzo-14-crown-4, dibenzo-15-crown-5 and dibenzo-18-crown-6) which are prepared by electrochemical polymerization in BFEE. Ferroelectricity in PDBC freestanding films appears on account of spontaneous polarization resulted from hydrogen bonds, generated due to the intermolecular association between carbons on the benzene rings and ether bonds. As the number of ether bonds increases, the ferroelectric phenomenon of PDBC is more remarkable, which is coincident with the enhancing hydrogen bonding effect. Meanwhile, such effect is inexistent in polyphenyl.

Keywords

ferroelectricity, dibenzo-crown ether, hydrogen bond

Funding

Jiangxi Science & Technology Normal University (KY2010ZY13)

References

[1]Wegner G. A survey on structure and properties of polymers with metal-like conductivity. Makromol Chem Macromol Symp 1986, (1), 151–71.
[2]Kapolow S, Hogen Esch TE, Smid J. Poly(vinyl macrocyclic polyethers) synthesis and cation binding properties. Macromolecules 1973, (6), 133–42.
[3]Tomoi M, Abe O, Ikeda M, Kihara K, Kakiuchi H. Syntheses of hydroxy group containing crown ethers and polymer-supported crown ethers. Tetrahedron Lett 1978, 3031–4.
[4]Manecke G, Kramer A. On polymeric crown-ethers based on 18-crown-6 containing vinyl monomers. Makromol Chem 1981, (182), 3017–30.
[5]Blasius E, Jansen KP, Klotz H, Toussaint A. Phase-transfer catalyzes by a polymer with dibenzo-18-crown-6 as anchor group. Makromol Chem 1982, (183), 1401–11.
[6]Montanari F, Tundo P. Polymer-supported phase-transfer catalysts crown ethers and cryptands bonded by a long alkyl chain to a polystyrene matrix. J Org Chem 1981, (46), 2125–30.
[7]Wegener, M., Polarization-electric field hysteresis of ferroelectric PVDF films: comparison of different measurement regimes. The Review of scientific instruments 2008, 79 (10), 106103.
[8]Kochervinskii, V. V., Ferroelectricity of polymers based on vinylidene fluoride. Russian chemical review 1999, 68 (10), 821-857.
[9]Goto, H.; Akagi, K.; Dai, X.; Narihiro, H., Synthesis and Dielectric Property of a Ferroelectric Liquid Crystalline Polythiophene Derivative. Ferroelectrics 2007, 348 (1), 149-153.
[10]Majumdar, D.; Saha, S. K., Observation of ferroelectric response in conjugated polymer nanotubes. Applied Physics Letters 2010, 96 (18), 183113.
[11]Bar-Cohen, Y.; Simaite, A.; Tondu, B.; Mathieu, F.; Souéres, P.; Bergaud, C., Simple casting based fabrication of PEDOT:PSS-PVDF-ionic liquid soft actuators. 2015, 9430, 94301E.
[12]Cochran, W., Crystal Stability and the Theory of Ferroelectricity. Physical Review Letters 1959, 3 (9), 412-414.
[13]Bilz, H.; Benedek, G.; Bussmann-Holder, A., Theory of ferroelectricity: The polarizability model. Phys Rev B Condens Matter 1987, 35 (10), 4840-4849.
[14]Farag, N.; Kliem, H., Ferroelectiric hysteresis in systems of permanent dipoles: A computer simulation. Ferroelectrics 1999, 228 (1), 197-218.
[15]Mitsui, T., Theory of the Ferroelectric Effect in Rochelle Salt. Physical Review 1958, 111 (5), 1259-1267.
[16]16. Gene H. Haertling*, Ferroelectric Ceramics_ History and Technology. J. Am. Ceram. Soc. 1999, 82 (4), 797–818.
[17]Chen, X.; Han, X.; Shen, Q.-D., PVDF-Based Ferroelectric Polymers in Modern Flexible Electronics. Advanced Electronic Materials 2017, 3 (5), 1600460.
[18]Majumdar, D.; Saha, S. K., Observation of ferroelectric response in conjugated polymer nanotubes. Applied Physics Letters 2010, 96 (18), 183113.
[19]Nicole Levi, R. C., Shuya Xing, Preethi Iyer, and David L. Carroll*, Properties of Polyvinylidene Difluoride−Carbon Nanotube Blends. NANO LETTERS 2004.4, 4 (7), 1267-1271.
[20]Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; de Leeuw, D. M.; Naber, R. C. G.; Blom, P. W. M., All-polymer ferroelectric transistors. Applied Physics Letters 2005, 87 (9), 092903.
[21]Kang, S. J.; Bae, I.; Park, Y. J.; Park, T. H.; Sung, J.; Yoon, S. C.; Kim, K. H.; Choi, D. H.; Park, C., Non-volatile Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Memory Based on a Single-Crystalline Tri-isopropylsilylethynyl Pentacene Field-Effect Transistor. Advanced Functional Materials 2009, 19 (10), 1609-1616.
[22]Lutkenhaus, J. L.; McEnnis, K.; Serghei, A.; Russell, T. P., Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules 2010, 43 (8), 3844-3850.
[23]Shen, L.; Xu, J.; Wei, Z.; Xiao, Q.; Pu, S., Electrosyntheses of freestanding poly (3-(4-fluorophenyl)thiophene) films in boron trifluoride diethyl etherate. European Polymer Journal 2005, 41 (8), 1738-1746.
[24]Zhou, W.; Zhai, C.; Du, Y.; Xu, J.; Yang, P., Electrochemical fabrication of novel platinum-poly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium. International Journal of Hydrogen Energy 2009, 34 (23), 9316-9323.
[25]Zhang, L.; Duan, X.; Wen, Y.; Xu, J.; Yao, Y.; Lu, Y.; Lu, L.; Zhang, O., Electrochemical behaviors of roxithromycin at poly(3,4-ethylenedioxythiophene) modified gold electrode and its electrochemical determination. Electrochimica Acta 2012, 72, 179-185.
[26]Hui Sun, B. L., Xuemin Duan*, Jingkun Xu*, Liqi Dong, Xiaofei Zhu, Kaixin Zhang, Dufen Hu, Shouli Ming, Electrosynthesis and Characterization of a New Conducting Copolymer from 2’-aminomethyl-3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene. International Journal of ELECTROCHEMICAL SCIENCE 2015.
[27]Zhou, W.; Guo, M.; Xu, J.; Yuan, X., Electrosyntheses of free-standing poly(dibenzo-18-crown-6) films in boron trifluoride diethyl etherate on stainless steel electrode. European Polymer Journal 2008, 44 (3), 656-664.

Copyright © 2022 Shuai Zhu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License