Review of Skin Problems Caused by Stress
Journal: Journal of Clinical Medicine Research DOI: 10.32629/jcmr.v3i3.1047
Abstract
Long-term exposure to social and biological/physical stressful events produces stress responses. The hypothalamic-pituitary-adrenal (HPA) axis is one of the main neuroendocrine regulatory systems in the process of stress. Recent studies have shown that skin, as a large endocrine organ, also has peripheral neuroendocrine regulatory functions similar to the central HPA axis. The skin also responds positively to stress and produces a range of symptoms. This review will introduce a series of skin apparent problems caused by stress from the perspectives of molecular biology, skin neurology, endocrinology and immunology, hoping to provide another solution for cosmetic practitioners to deal with these skin apparent problems.
Keywords
stress, skin neurology, endocrine, molecular biology, skin problems
Full Text
PDF - Viewed/Downloaded: 10 TimesReferences
[2] Josiane Motta e Motta MD, et al. Acute physical and mental stress resulted in an increase in fatty acids, norepinephrine, and hemodynamic changes in normal individuals: A possible pathophysiological mechanism for hypertension — Pilot study. J Clin Hypertens. 2021;23:888-894 .
[3] Papadimitriou, A., Priftis, K. N. Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation, 2009, 16 (5), 265-271.
[4] Mariotti A. The effects of chronic stress on health: new insights into the molecular mechanisms of brain-body communication. Future Sci OA. 2015;1:FSO23.
[5] McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186:190-222.
[6] Elenkov IJ, Chrousos GP. Stress system-organization, physiology and immunoregulation. Neuro-immunomodulation. 2006;13:257-267.
[7] Paus R, Theoharides TC. ATck PC. Neuro-immunoendocrine circuitry of the brain-skin connection[J]. Trends in Immunology, 2006; 27(1): 32-39.
[8] G. Hong-wei, H. Fei, et al. Research Progression of Independent HPA System in Skin. CHIN J DERM VENEREOL. 001-089(2009)12-0841-03.
[9] Smith, S. M.; Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 2006, 8 (4), 383-395.
[10] A.L. van der Salm, D.T. Nolan, et al. In vitro evidence that cortisol directly modulates stress-related responses in the skin epidermis of the rainbow trout (Oncorhynchus mykiss Walbaum). Fish Physiology and Biochemistry 27: 9-18, 2002.
[11] REN Yan, WANG Chun. The mechanism and treatment progress of inhibited cutaneous ulcers healing in patients with hypercortisolism. West China Medical Journal, Apr. 2021, Vol. 36, No. 4.
[12] Kim, J. E.; Cho, B. K.; Cho, D. H.; Park, H. J. Expression of hypothalamic-pituitary-adrenal axis in common skin diseases: evidence of its association with stress-related disease activity. Acta Derm. Venereol., 2013, 93 (4), 387-393.
[13] lominaki A, Wortsman J, Paus R. Skin as an endocrine organ: implications for its function. Drug Discov Today Dis Mech. 2008 Jun 1;5(2):137-144.
[14] Andrzej Slominski, Blazej Zbytek, Andrzej Szczesniewski, et al. Cultured Human Dermal Fibroblasts do Produce Cortisol. Journal of Investigative Dermatology, 2005;126(5): 1177-1178.
[15] Botchkarev, V. A. Yaar, M. Peters, E. M, et al. Neurotrophins in skin biology and pathology. J. Invest.
Dermatol., 2006, 126 (8), 1719-1727.
[16] Grando, S. A.; Pittelkow, M. R.; Schallreuter, K. U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol., 2006, 126 (9), 1948-1965.
[17] G. W. M. Millington. Proopiomelanocortin (POMC): the cutaneous roles of its melanocortin products and receptors. Clinical and Experimental Dermatology, 31, 407-412.
[18] Botchkarev, V. A.; Yaar, M.; Peters, E. M.; Raychaudhuri, S. P.; Botchkareva, N. V.; Marconi, A.; Raychaudhuri, S. K.; Paus, R.; Pincelli, C. Neurotrophins in skin biology and pathology. J. Invest. Dermatol., 2006, 126 (8), 1719-1727.
[19] Hara, J.; Higuchi, K.; Okamoto, R.; Kawashima, M.; Imokawa, G. High-expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatitis. J. Invest. Dermatol., 2000, 115 (3), 406-413.
[20] Kiecolt-Glaser, J. K.; Marucha, P. T.; Malarkey, W. B.; Mercado, A. M.; Glaser, R. Slowing of wound healing by psychological stress. Lancet, 1995, 346 (8984), 1194-1196.
[21] Min Ah Kim, Eun Joo Kim, Byung Young Kang, The Effects of Sleep Deprivation on the Biophysical Properties of Facial Skin. Journal of Cosmetics, Dermatological Sciences and Applications. Vol.7 No.1, March 2017.
[22] Garg, A.; Chren, M. M.; Sands, L. P.; Matsui, M. S.; Marenus, K. D.; Feingold, K. R.; Elias, P. M. Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. Arch. Dermatol., 2001, 137 (1), 53-59.
[23] Jessica Walburna, Kavita Vedhara. Psychological stress and wound healing in humans: A systematic review and meta-analysis. Journal of Psychosomatic Research 67 (2009) 253-271.
[24] Sheridan JF, Padgett DA, Avitsur R, Marucha PT. Experimental models of stress and wound healing. World J Surg 2004;28:327-30.
[25] French SS, Matt KS, Moore MC. The effects of stress on wound healing in male tree lizards (Urosaurus ornatus). Gen Comp Endocrinol 2006;145:128-32.
[26] Padgett, D. A., Marucha, P. T.; Sheridan, J. F. Restraint stress slows cutaneous wound healing in mice. Brain. Behav. Immun., 1998, 12 (1), 64-73.
[27] Jong-Kyung Youm, PhD1,2; Kyungho Park, Local blockade of glucocorticoid activation reverses stress-and glucocorticoid-induced delays in cutaneous wound healing. Wound Rep Reg (2013) 21 715-722
[28] Chedid M, Hoyle JR, Csaky KG, et al. Glucocorticoids inhibit keratinocyte growth factor production in primary dermal fibroblasts. Endocrinology, 1996, 137(6): 2232-2237.
[29] Beer HD, Fassler R, Werner S. Glucocorticoid-regulated gene ex-pression during cutaneous wound repair. Vitam Horm, 2000, 59: 217-239.
[30] Ito K, Chung KF, Adcock IM. Update on glucocorticoid action and resistance. J Allergy Clin Immunol, 2006, 117(3): 522-543.
[31] Ju Qiang. Acne: A familiar but unfamiliar disease for dermatologists[J].China Medical Abstracts of Dermatology ,2022, 203(01):1-2.
[32] Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361-372
[33] Chiu, A.; Chon, S. Y.; Kimball, A. B. The response of skin disease to stress: changes in the severity of acne vulgaris as affected by examination stress. Arch. Dermatol., 2003, 139 (7), 897-900.
[34] Alex Alexopoulos, George P. Chrousos. Stress-related skin disorders. Rev Endocr Metab Disord. 2016 Sep;17(3):295-304.
[35] Zouboulis, C. C.; Seltmann, H.; Hiroi, N.; Chen, W.; Young, M.; Oeff, M.; Scherbaum, W. A.; Orfanos, C. E.; McCann, S. M.; Bornstein, S. R. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc. Natl. Acad. Sci. U. S. A., 2002, 99 (10), 7148-7153.
[36] Zbytek B, Mysliwski A, Slominski A, Wortsman J, Wei ET,Mysliwska J. Corticotropin-releasing hormone affects cytokineproduction in human HaCaT keratinocytes. Life Sci. 2002;70(9):1013-21.
[37] Zhang, X.; Lin, S.; Funk, W. E.; Hou, L. Environmental and occupational exposure to chemicals and telomere length in human studies. Occup. Environ. Med., 2013, 70 (10), 743-749.
[38] Oyetakin-White, P.; Koo, B.; Matsui, M.; Yarosh, D.; Fthenakis, C.; Cooper, K.; Baron, E. In Effects of Sleep Quality on Skin Aging and Function, J. Invest. Dermatol., 2013, S126-S126.
[39] Epel, E. S.; Blackburn, E. H.; Lin, J.; Dhabhar, F. S.; Adler, N. E.; Morrow, J. D.; Cawthon, R. M. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. U. S. A., 2004, 101 (49), 17312-17315.
[40] Zbytek B, Slominski AT. CRH mediates inflammation in-duced by lipopolysaccharide in human adult epidermal keratinocytes. J Invest Dermatol. 2007;127:730-732.
[41] Peng Guanjie, Guo Qingquan. Science and technology in whitening cosmetics[M]. China Light Industry Press. June 2019
[42] Lerner AB, McGuire JS. Effect of alpha-and beta-melano-cyte stimulating hormones on the skin colour of man. Nature. 1961;189:176-179.
[43] Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regu-lation. Physiol Rev. 2004;84:1155-1228.
[44] Wakamatsu K, Graham A, Cook D, Thody AJ. Charac-terisation of ACTH peptides in human skin and their ac-tivation of the melanocortin-1 receptor. Pigment Cell Res.1997;10:288-297.
[45] Coll AP, Farooqi IS, Challis BG, Yeo GSH, O’Rahilly S. Proopiomelanocortin and energy balance: insights from human and murine genetics. J Clin Endocr Metab 2004;89:2557-62.
[46] Kingo K, Anmin E, Karelson M, et al. Gene expression analysis of melanocortin system in vitiligo. J Dermatol Sci. 2007;48:113-22
[47] Petra C. Arck1, Andrzej Slominski. Neuroimmunology of Stress: Skin Takes Center Stage. Journal of Investigative Dermatology (2006) 126, 1697-1704.
[48] Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125-63
[49] Nives Pondeljak, MD; Stress-Induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters. Clinical Therapeutics. 2020 May;42(5):757-770.
[50] Slominski A, Wortsman J, Luger T,Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979e1020.
[51] Slominski AT, Zmijewski MA, Skobowiat C, et al. Sensing the environment: regulation of local and global homeostasis by the skin neuroendocrine system. Adv Anat Embryol Cell Biol. 2012;212:1-115.
[52] Park, H. J.; Kim, H. J.; Lee, J. Y.; Cho, B. K.; Gallo, R. L.; Cho, D. H. Adrenocorticotropin hormone stimulates interleukin-18 expression in human HaCaT keratinocytes. J. Invest. Dermatol., 2007, 127 (5), 1210-1216.
[53] Park HJ, Kim HJ, Lee JH, Lee JY, Cho BK, Kang JS, Kang H, Yang Y, Cho DH. Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-acti-vated protein kinase (MAPK) pathway. J Invest Dermatol.2005;124:751-755.
[54] Tausk F, Elenkov I, Moynihan J. Psychoneuroimmunology [J]. Dermatol Ther, 2008, 21(1): 22-31
[55] Arck P, Paus R. From the brain-skin connection: the neu-roendocrine-immune misalliance of stress and itch [J]. Neuroimmunomodulation, 2006, 13(5/6): 347-356.
[56] Singh, L. K.; Pang, X.; Alexacos, N.; Letourneau, R.; Theoharides, T. C. Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: A link to neurogenic skin disorders. Brain. Behav. Immun., 1999, 13 (3), 225-239.
[57] Lotz, M.; Vaughan, J. H.; Carson, D. A. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science, 1988, 241 (4870), 1218-1221.
[58] Fisher, G. J., Datta, S. C., Talwar, H. S., Wang, Z. Q., Varani, J., Kang, S., & Voorhees, J. J.(1996). Molecular basis of sun-induced premature skin ageing and retinoid antag-onism. Nature, 379, 335-339.
[59] Skobowiat, C.; Dowdy, J. C.; Sayre, R. M.; Tuckey, R. C.; Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab., 2011, 301 (3), E484-493.
[60] Schoepe, S.; Schacke, H.; May, E.; Asadullah, K. Glucocorticoid therapy-induced skin atrophy. Exp. Dermatol., 2006, 15 (6), 406-420
[61] Dunn, J. H., & Koo, J. (2013). Psychological Stress and skin aging: A review of possible mechanisms and potential therapies. Dermatology Online Journal, 19, 18561.
[62] Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, et al. A stress response pathway
regulates DNA damage through β[2]-adrenoreceptors and β-arrestin-1. Nature. 2011.
[63]Romana-Souza, B., Santos Lima-Cezar, G., & Monte-Alto-Costa, A. (2015). Psychological stress-induced catecholamines accelerates cutaneous aging in mice. Mechanisms of Ageing and Development, 152, 63-73.
[64] Flint, M. S.; Baum, A.; Chambers, W. H.; Jenkins, F. J. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology, 2007, 32 (5), 470-479.
[65] Hara, M. R.; Kovacs, J. J.; Whalen, E. J.; Rajagopal, S.; Strachan, R. T.; Grant, W.; Towers, A. J.; Williams, B.; Lam, C. M.; Xiao, K.; Shenoy, S. K.; Gregory, S. G.; Ahn, S.; Duckett, D. R.; Lefkowitz, R. J. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature, 2011, 477 (7364), 349-353.
[66] Hara, M. R.; Sachs, B. D.; Caron, M. G.; Lefkowitz, R. J. Pharmacological blockade of a beta(2)AR-beta-arrestin-1 signaling cascade prevents the accumulation of DNA damage in a behavioral stress model. Cell Cycle, 2013, 12 (2), 219-224..
[67] O'Leary, C. J.; Creamer, D.; Higgins, E.; Weinman, J. Perceived stress, stress attributions and psychological distress in psoriasis. J. Psychosom. Res., 2004, 57 (5), 465-471.
[68] Garg A, Chren MM, Sands LP , et al. Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stress-associated skin disorders. Arch Dermatol.2001;137(1):53-9.
[69] Steinhoff, M.; Bienenstock, J.; Schmelz, M.; Maurer, M.; Wei, E.; Biro, T. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J. Invest. Dermatol., 2006, 126 (8), 1705-1718.
[70] Paus, R.; Arck, P. Neuroendocrine perspectives in alopecia areata: does stress play a role? J. Invest. Dermatol., 2009, 129 (6), 1324-1326
Copyright © 2022 Hao Chen, Tingzhi Zhang, Xiaoqun Xu, Shu Wan, Yiqi Wang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License